Okablowanie strukturalne sieci
Teoria i praktyka
Zaprojektuj niezawodną sieć teleinformatyczną!
• Charakterystyka i cele tworzenia systemu okablowania, czyli elementarz projektanta
• Elementy składowe okablowania strukturalnego, czyli kompletnie niezbędnych materiałów
• Projekt sieci, czyli szczegółowe rozwiązania i przewidywanie potencjalnych zagrożeń

Wydanie III
Helion
Okablowanie strukturalne sieci. Teoria i praktyka. Wydanie III

Autor: Rafał Pawlak
ISBN: 978-83-246-3377-7
Format: 158×235, stron: 296

Zaprojektuj niezawodną sieć teleinformatyczną!

- Charakterystyka i cele tworzenia systemu okablowania, czyli elementarz projektanta
- Elementy składowe okablowania strukturalnego, czyli kompletowanie niezbędnych materiałów
- Projekt sieci, czyli szczegółowe rozwiązania i przewidywanie potencjalnych zagrożeń

Zagadnienie okablowania, czyli de facto stworzenia całej struktury sieciowej w przestrzeni o określonym, często skomplikowanym układzie, nie jest tak proste, jak mogłoby się z pozoru wydawać. Samo ułożenie kabli poprzedzone musi być za każdym razem kompleksową analizą wszystkich elementów powstającego systemu, od aspektów ścisłe technicznych (gdzie umieścić szafy, ulokować serwery, jakie instalacje towarzyszą wdrożyć?), aż po sposoby i miejsca wykorzystywania sieci przez użytkowników. To zadanie wymaga wiedzy oraz świadomości celów, a także dużej wyobraźni, nie tylko przestrzennej. Indywidualne dostosowanie powstającej infrastruktury do specyfiki lokalizacji docelowej i potrzeb użytkowników zawsze zależy od projektanta, a niezbędną wiedzę pozwalającą na stworzenie sprawnie działającej sieci teleinformatycznej znajdziesz właśnie w tej książce!

Plan książki:

- Charakterystyka i cele tworzenia systemu okablowania
- Przewodowe media transmisyjne
- Elementy składowe okablowania strukturalnego
- Środowisko pracy dla centrum danych (DATA CENTER)
- Dokumentacja projektowa i odbiór systemu okablowania
- Porady techniczno-instalacyjne
- Okablowanie strukturalne a normy
- Redundancja okablowania pionowego
- Okablowanie strukturalne a backup danych
- Reakcja na awarie i projekt sieci
- Okablowanie strukturalne w pytaniach i odpowiedziach

Zbuduj system okablowania strukturalnego skrojony na miarę!
Spis treści

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podziękowania</td>
<td>9</td>
</tr>
<tr>
<td>Prolog</td>
<td>11</td>
</tr>
<tr>
<td>Wstęp</td>
<td>13</td>
</tr>
<tr>
<td>Rozdział 1. Charakterystyka i cele tworzenia systemu okablowania</td>
<td>15</td>
</tr>
<tr>
<td>Podstawa rozważań — model ISO/OSI</td>
<td>17</td>
</tr>
<tr>
<td>Istota systemu okablowania strukturalnego</td>
<td>18</td>
</tr>
<tr>
<td>Geneza</td>
<td>18</td>
</tr>
<tr>
<td>Początki okablowania strukturalnego</td>
<td>19</td>
</tr>
<tr>
<td>Istota okablowania</td>
<td>20</td>
</tr>
<tr>
<td>Metoda</td>
<td>20</td>
</tr>
<tr>
<td>Topologie systemu</td>
<td>21</td>
</tr>
<tr>
<td>Rozdział 2. Przewodowe media transmisyjne</td>
<td>25</td>
</tr>
<tr>
<td>Typy sygnału</td>
<td>25</td>
</tr>
<tr>
<td>System binarny</td>
<td>29</td>
</tr>
<tr>
<td>Algebra Boole’a</td>
<td>32</td>
</tr>
<tr>
<td>Kable miedziane</td>
<td>37</td>
</tr>
<tr>
<td>Kable koncentryczne</td>
<td>37</td>
</tr>
<tr>
<td>Kable UTP</td>
<td>38</td>
</tr>
<tr>
<td>Światłowody</td>
<td>46</td>
</tr>
<tr>
<td>Budowa światłowodu</td>
<td>49</td>
</tr>
<tr>
<td>Klasyfikacja światłowodów</td>
<td>50</td>
</tr>
<tr>
<td>Sposoby łączenia włókien</td>
<td>54</td>
</tr>
<tr>
<td>Złącza światłowodowe (optyczne)</td>
<td>57</td>
</tr>
<tr>
<td>Rozdział 3. Elementy składowe okablowania strukturalnego</td>
<td>61</td>
</tr>
<tr>
<td>Okablowanie poziome, pionowe i międzybudynkowe</td>
<td>61</td>
</tr>
<tr>
<td>Okablowanie poziome</td>
<td>61</td>
</tr>
<tr>
<td>Okablowanie pionowe</td>
<td>64</td>
</tr>
<tr>
<td>Okablowanie międzybudynkowe</td>
<td>65</td>
</tr>
<tr>
<td>Punkty rozdzielcze</td>
<td>65</td>
</tr>
<tr>
<td>Nomenklatura polska</td>
<td>66</td>
</tr>
<tr>
<td>Nazewnictwo angielskie</td>
<td>67</td>
</tr>
<tr>
<td>Dobór pomieszczenia na punkt dystrybucyjny</td>
<td>68</td>
</tr>
</tbody>
</table>
Punkt abonencki, sekwencja i polaryzacja .. 69
Punkt abonencki .. 69
Oznakowanie gniazda .. 71
System oznaczników kablowych .. 74
Sekwencja ... 74
Polaryzacja .. 78
Terminowanie .. 80
Elementy pasywne systemu ... 83
Szafy dystrybucyjne .. 83
Ustawianie i konfiguracja „czystej” szafy ... 89
Elementy chłodzące szafę ... 92
Elementy porządkujące przewody w szafie .. 94
Spręż pasywny ... 98
Kable krosowe ... 103
Dobór przepustowości w segmencie ... 108
MUTO ... 114
Światłowód prosto do biurka ... 116
Instalacje towarzyszące .. 117
Sieć elektryczna ... 117
Zasilanie awaryjne ... 120
Instalacja telefoniczna .. 121

Rozdział 4. Środowisko pracy dla centrum danych (data center) 123
Definiowanie zagrożeń ... 124
Ochrona przeciwpożarowa ... 126
System klimatyzacyjny .. 132
Chłodzenie i wentylacja szaf ... 132
Elektroniczna kontrola dostępu ... 137

Rozdział 5. Dokumentacja projektowa .. 139
Cele i zadania .. 139
Projekt systemu okablowania strukturalnego (sieci LAN) 143
Kosztorys ... 150

Rozdział 6. Odbiór systemu okablowania .. 151
Sprawdzanie systemu pod względem zgodności z normami 152
Procedura sprawdzania światłowodu przed instalacją ... 156
Rozwiązania gwarancyjne ... 157

Rozdział 7. Porady techniczno-instalacyjne .. 159
Ogólne zalecenia instalacyjne oraz ochrona kabli przed czynnikami zewnętrznymi ... 160
Ogólne zalecenia instalacyjne ... 160
Ochrona kabli przed czynnikami zewnętrznymi .. 163
Zasady układania kabli w gruncie ... 164
Sposoby przeciągania kabla przez kanalizację ... 166
Systemy listew i rur do instalacji teleinformatycznych ... 167
Systemy dystrybucji okablowania ... 170
Sprzęt instalatora .. 174

Rozdział 8. Okablowanie strukturalne a normy .. 181
Podstawowe instytucje standaryzujące ... 181
Główne dokumenty legislacyjne .. 183
Porównanie podstawowych norm .. 185
Spis treści

Rozdział 9. Redundancja okablowania pionowego ... 187
 Redundancja okablowania kampusowego .. 187
 Przykładowe rozwiązanie ... 193

Rozdział 10. Okablowanie strukturalne a backup danych 195
 Podstawowe metody archiwizacji danych ... 196

Rozdział 11. Reakcja na awarie ... 205
 Algorytm zarządzania incydentem ... 208
 Awaria systemu okablowania ... 211
 Awaria urządzeń aktywnych ... 213
 Awaria zasilania ... 214
 Awaria układu chłodzenia ... 216
 Awaria układu przeciwpożarowego ... 218
 Awaria systemu kontroli dostępu .. 219

Rozdział 12. Projekt sieci ... 221
 Proponowane rozwiązanie ... 222
 Szafy ... 228
 Monitoring i kontrola dostępu ... 231
 Telefony ... 231
 Zasilanie awaryjne .. 232
 System gaszenia .. 232
 Klimatyzacja .. 232
 Kosztorys .. 233

Rozdział 13. Okablowanie strukturalne w pytaniach i odpowiedziach 237
 Rozmowa 1. — wypowiada się pani Aleksandra Parys 238
 Rozmowa 2. — wypowiada się pan Krzysztof Wała .. 246
 Rozmowa 3. — wypowiada się pan Grzegorz Niziński 251
 Rozmowa 4. — wypowiada się pan Janusz Jankowski 258

Słowniczek terminów ... 281

Skorowidz .. 287
Rozdział 2.
Przewodowe media transmisyjne

Ten rozdział traktuje o przewodowych mediach transmisyjnych. Omówię w nim rodzaje i klasyfikacje nośników. Przedstawię także rodzaje sygnału oraz podstawowe funkcje logiczne w układach cyfrowych.

Przewodowe media transmisyjne mają tę wyższość nad systemami bezprzewodowymi, iż oferują większe przepustowości. Cała sztuka polega na prawidłowym dobraniu przewodu oraz zapewnieniu stosownych warunków.

Placówki medyczne są doskonałym przykładem miejsc, w których powinno się stosować ekranowane kable miedziane. W szpitalach należy wystrzegać się rozwiązań bezprzewodowych, gdyż propagacja fal elektromagnetycznych może zakłócić pracę bardzo czułej aparatury medycznej. W salach operacyjnych z powodzeniem można wykorzystywać światłowody i ekranowane kable miedziane.

Typy sygnału

Sam sygnał (niezależnie od jego rodzaju) możemy zdefiniować jako falę elektromagnetyczną. Przewodnikami (mediami) fala elektromagnetycznych mogą być metale, kable światłowodowe czy też powietrze.

Wyróżniamy dwa typy sygnałów:

♦ analogowy,
♦ cyfrowy.

Sygnał analogowy jest funkcją napięcia i czasu. Zmienia się on w sposób ciągły. Przykładem sygnału analogowego jest ludzka mowa.
Natomia sygnał dyskretny (cyfrowy) nie jest funkcją ciągłą, lecz ciągiem wartości próbek (ang. sample). Sygnał analogowy można przekształcić na postać cyfrową. Odbywa się to za pomocą próbkowania (dyskretyzacja, kwantowanie) przebiegu. W praktyce mierzona (próbkowana) jest chwilowa wartość sygnału analogowego w określonych odstępach czasu (rysunek 2.1). Sygnał dyskretny jest ciągiem próbek.

Rysunek 2.1.
Próbkowanie sygnału analogowego

Twierdzenie Kotielnikowa-Shannona mówi, że aby odtworzyć sygnał ciągły z sygnału dyskretnego, częstotliwość próbkowania musi być co najmniej dwa razy większa od szerokości jego pasma.

Nośnik CD-Audio jest próbkowany z częstotliwością 44,1 kHz (44 100 razy na sekundę). Ludzkie ucho słyszy dźwięki o częstotliwości około 20 kHz, tak więc aby odtworzyć sygnał z płyty audio, a następnie podać go w postaci analogowej, niezbędne jest co najmniej 40 000 (40 kHz) próbek.

Sygnał analogowy doskonale nadaje się do przekazywania dźwięków oraz informacji pomiarowych (np. temperatury), natomiast sygnał cyfrowy wykorzystywany jest do przedstawiania informacji logicznych i symbolicznych.

Proces kształtowania (formowania) danych w postaci cyfrowej nazywamy kodowaniem, a ich odczyt — dekodowaniem.

Kwantowanie w czasie (próbkowanie) jest tylko jednym z procesów tworzenia sygnału impulsowego. Tym niemniej dla naszych dalszych rozważań wystarczy wiedza o tym, na czym polega różnica między sygnałem cyfrowym a analogowym oraz jak powstaje impuls (bit).

W sygnale cyfrowym zmiana napięcia odbywa się skokowo w określonych odstępach czasu. Ma on zazwyczaj tylko dwa poziomy (rysunek 2.2): wysoki H (ang. high) i niski L (ang. low). W elektronicznych układach cyfrowych nośnikiem sygnału jest najczęściej napięcie. Przyjmuje ono w zależności od poziomu określone przedziały: poziom niski 0 – 0,4 V, poziom wysoki 2 – 5 V. Każdy z poziomów ma przypisaną wartość logiczną H = 1 (prawda) i L = 0 (fałsz) — stąd też sygnał nazywany jest cyfrowym.
Rozdział 2. ♦ Przewodowe media transmisyjne

Rysunek 2.2.
Sygnał cyfrowy w dwóch poziomach (H, L)

Na rysunku 2.2 widać, iż impulsy obrazują liczbę 0110 w systemie binarnym. W systemie dziesiętnym jest to liczba 6.

Bit posiada czas trwania T_1. W tym okresie impuls narasta, utrzymuje stan logiczny (poziom) i opada (rysunek 2.3).

Rysunek 2.3.
Charakterystyka pojedynczego impulsu, gdzie T_0 to szerokość szczeliny, a T_1 — czas impulsu

Sygnał cyfrowy jest bardziej odporny na zakłócenia i zniekształcenia podczas jego transmisji. Impuls docierający do odbiornika jest identyfikowany (klasyfikowany) jako wartość jeden lub zero (poziom niski albo wysoki). Odbywa się to w oparciu o pomiar amplitudy odbieranego sygnału użytecznego. Ważne jest, aby amplituda sygnału zakłócającego nie przekroczyła progu detekcji sygnału właściwego. Jeżeli pojawi się zakłócenie, które przekroczy ten próg, zostanie zaklasyfikowane jako 1 lub 0 — powstanie błąd.

Ogólnie rzecz ujmując, błędy polegają na wstawianiu nowych (obcych) bitów w ciąg albo na przekląkanym wartości istniejącego znaku właściwie nadanego.

Problem jest znacznie głębszy, aniżeli ukazuje to zaprezentowane przeze mnie spojrzenie logiczne. Więcej do powiedzenia w tej materii mają fizycy i inżynierowie elektrycy, którzy pracują bezpośrednio przy produkcji sprzętu pasywnego. To oni określają parametry produktu.
Zadaniem projektantów systemu okablowania strukturalnego jest odpowiedni dobór elementów względem siebie oraz zapewnienie im odpowiedniego środowiska pracy zgodnie z wytycznymi zawartymi w karcie produktu. Potrzebna jest do tego podstawowa wiedza z zakresu natury sygnału i aspektów jej towarzyszących.

Rysunek 2.4.
Kodowanie sygnału NRZ i RZ, gdzie T₀ jest szerokością szczeliny czasowej przeznaczonej dla 1 bitu, a T₁ i T₃ to czas trwania impulsu

W kodowaniu RZ pojedynczy bit równy 1 reprezentowany jest przez niezależny impuls, natomiast przy metodzie NRZ sąsiadujące wartości 1 tworzą odpowiednio dłuższy impuls łączny. Kodowanie NRZ zapewnia efektywne wykorzystanie szerokości pasma, zaś technika RZ zwiększa szerokość pasma dwukrotnie (uzyskujemy większą liczbę zmian wartości sygnału).

Z pojęciem sygnału nierozerwalnie wiążą się poniższe terminy.

- **Tłumienie sygnału** — to nic innego jak zmniejszenie siły sygnału.
- **Zniekształcenie sygnału** — jest to dość groźne zjawisko, które polega na niepożądanej zmianie charakterystyki sygnału (kształtu).
Na rysunku 2.5 widać sygnał analogowy (sinusoidalny) gasnący. W ostatniej fazie (zaciemniony prostokąt) jest on wyraźnie zniekształcony w stosunku do pierwotnej sinusoidy. W celu przywrócenia początkowej siły sygnału należy zastosować wzmacniacz. Powinno się go podłączyć w takim odcinku kabla, aby sygnał jeszcze nie był poddany zniekształceniu.

Rysunek 2.5.
Sygnał analogowy

Więcej informacji na ten temat umieściłem w rozdziale 6. „Odbiór systemu odbijającego”. Omawiam w nim aspekty związane z pomiarami przewodów, a także całych linii transmisyjnych.

System binarny

Dwójkowy system liczbowy jest powszechnie wykorzystywany w informatyce. Do zapisu liczb potrzebujemy tylko dwóch znaków: 0 i 1 (L i H). W pozycyjnych systemach liczbowych liczby zapisuje się jako ciągi cyfr. Aby obliczyć wartość liczby dziesiętniej zapisanej w systemie binarnym, musimy pomnożyć wszystkie cyfry z ciągu przez wartość kolejnej potęgi liczby stanowiącej podstawę systemu, a następnie uzyskane w ten sposób wartości poddać operacji sumowania.

Ciąg cyfr 1100 w systemie binarnym odpowiada liczbie 12 podanej dziesiętnie.

Obliczamy to w następujący sposób:

$$(1100)_2 = (1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0) = 8 + 4 + 0 + 0 = (12)_{10}$$

Dodatkowe dwa przykłady:

$$(10110)_2 = (1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0) = 16 + 0 + 4 + 2 + 0 = (22)_{10}$$

$$(11000000)_2 = (1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0) = (192)_{10}$$

Najprostszą metodą uzyskania notacji binarnej z systemu dziesiętnego jest wykonywanie dzielenia przez 2 liczby przekształconej oraz zapisywanie reszty z operacji.
Przeliczmy liczbę (48)_{10} na system dwójkowy:

<table>
<thead>
<tr>
<th>Wynik</th>
<th>Dzielnik</th>
<th>Reszta</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>÷ 2</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>÷ 2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>÷ 2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>÷ 2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>÷ 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Wartości z kolumny *Reszta* odczytujemy, zaczynając od dołu. Uzyskany w ten sposób ciąg stanowi zapis dwójkowy liczby (48)_{10} = (110000)_{2}.

Rozważmy jeszcze jeden przykład. Niech będzie to liczba (127)_{10}.

<table>
<thead>
<tr>
<th>Wynik</th>
<th>Dzielnik</th>
<th>Reszta</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>÷ 2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>÷ 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Liczbie (127)_{10} odpowiada zapis (1111111)_{2}.

Sprawne posługiwanie się systemem binarnym wymaga biegłości w potęgowaniu liczby 2, gdyż jest ona podstawą potęgowania (np. 1024 = 2^{10}). Z uwagi na to, iż najłatwiejsze rzeczy sprawiają nieprzewidywalnie dużo problemów, w tabeli 2.1 zawarłem przykładowe potęgi liczby dwa.

Tabela 2.1. Popularne potęgi liczby 2

<table>
<thead>
<tr>
<th>Potęga liczby 2</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{0}</td>
<td>1</td>
</tr>
<tr>
<td>2^{1}</td>
<td>2</td>
</tr>
<tr>
<td>2^{2}</td>
<td>4</td>
</tr>
<tr>
<td>2^{3}</td>
<td>8</td>
</tr>
<tr>
<td>2^{4}</td>
<td>16</td>
</tr>
<tr>
<td>2^{5}</td>
<td>32</td>
</tr>
<tr>
<td>2^{6}</td>
<td>64</td>
</tr>
<tr>
<td>2^{7}</td>
<td>128</td>
</tr>
<tr>
<td>2^{8}</td>
<td>256</td>
</tr>
<tr>
<td>2^{9}</td>
<td>512</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1024</td>
</tr>
<tr>
<td>2^{16}</td>
<td>65536</td>
</tr>
<tr>
<td>2^{n}</td>
<td>2^{n}</td>
</tr>
</tbody>
</table>
Przed przystąpieniem do omawiania elementarnych podstaw teoretycznych cyfrowy układów logicznych czuję się zobowiązany do wprowadzenia terminu bit i bajt.

Bit jest symbolem występującym tylko w dwóch wartościach (0 lub 1). Słowo 1-bitowe może przenosić maksymalnie dwie różne informacje. Bajt jest grupą 8 bitów i pozwala reprezentować 256 różnych informacji.

Informacja jest wartością (kombinacją znaków) przenoszoną w słowie bitowym. Słowo 3-bitowe umożliwia przestanie 8 (2³) różnych informacji. 3 bity dają osiem kombinacji wartości słowa (tabela 2.2).

Tabela 2.2. Kombinacje znaków dla słowa 1-, 2- i 3-bitowego

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bity</th>
<th>3 bity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>011</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

Wielokrotności (mnożniki) dla jednostek bit i bajt przedstawiłem w tabeli 2.3.

Tabela 2.3. Wielokrotności pojedynczego bitu

<table>
<thead>
<tr>
<th>Wielokrotność</th>
<th>bit</th>
<th>bajt</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilo = 1024 = 2¹⁰</td>
<td>kb (kilobit)</td>
<td>kB (kilobajt)</td>
</tr>
<tr>
<td>mega = 1048576 = 2²⁰</td>
<td>Mb (megabit)</td>
<td>MB (megabajt)</td>
</tr>
<tr>
<td>giga = 1073741824 = 2³⁰</td>
<td>Gb (gigabit)</td>
<td>GB (gigabajt)</td>
</tr>
<tr>
<td>tera = giga * 1024 = 2⁴⁰</td>
<td>Tb (terabit)</td>
<td>TB (terabajt)</td>
</tr>
</tbody>
</table>

Popełniłbym duży błąd, gdybym wspominając o adresach IP, nie podał przykładow prze- liczenia ich z systemu dziesiętnego na binarny. Ta umiejętność zawsze się przyda.

\[(192)_{10} = (1100000000)_{2}\]

\[(168)_{10} = (10101000)_{2}\]
(171)_{10} = (10101011)_{2}
(123)_{10} = (01111011)_{2}

Tak więc adres IP 192.168.171.123 w notacji dwójkowej wygląda następująco: 11000000.10101000.10101011.01111011.

Przytoczyłem podstawowe informacje na temat natury sygnału cyfrowego oraz systemu liczb dwójkowych. Wiedza ta będzie niezbędna podczas dalszych rozważań.

Algebra Boole’a

W związku z faktem, iż sygnał cyfrowy przyjmuje dwie wartości logiczne, niezbędne jest zapoznanie się z podstawowymi elementami algebry Boole’a. Operuje ona zmiennymi dwuwartościowymi (0 oraz 1). Wynikami jej funkcji (operacji) są zawsze elementy 0 i 1. W logice dodatniej 1 reprezentuje prawdę, natomiast w logice ujemnej — fałsz (tabela 2.4).

<table>
<thead>
<tr>
<th>LOGIKA</th>
<th>Poziom L</th>
<th>Poziom H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodatnia</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ujemna</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Oto trzy podstawowe operacje boole’owskie (tabela 2.5):

- ♦ suma logiczna: $a \lor b$;
- ♦ koniunkcja (iloczyn logiczny): $a \land b$;
- ♦ negacja logiczna (dopelnienie): \bar{a}.

<table>
<thead>
<tr>
<th>Wartość funkторa</th>
<th>$a \lor b$</th>
<th>$a \land b$</th>
<th>\bar{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Pojedyncze funkcje logiczne realizowane są przez elementy zwane bramkami logicznymi.

Jeśli na wejściu bramki OR (suma) pojawi się sygnał 1 i 1, to w wyniku przeprowadzonej operacji logicznej na wyjściu uzyskamy wartość 1. Analogicznie odbywa się to w innych bramkach realizujących typowe funkcje.
Dlaczego umiejętność posługiwania się fundamentalnymi funkcjami logicznymi jest tak ważna?

Dysponujemy argumentami logicznymi (0 i 1), za pomocą których możemy określić stany poszczególnych elementów cyfrowych. W teorii wszystkie funkcje logiczne można zrealizować przy użyciu tylko trzech podstawowych operacji: negacji, sumy i iloczynu.

Tego jednak nie praktykuje, gdyż układy logiczne byłyby zbyt rozbudowane, a tym samym — drogie. W praktyce stosuje się „gotowe” elementy z zaimplementowanymi funkcjami podstawowymi oraz operacjami bardziej złożonymi. Obowiązkiem inżyniera jest znać efekt (wynik) zestawienia ze sobą kilku układów cyfrowych.

Jednak nie jest to jeszcze pełny obraz zasadności stosowania rachunku zdań.

Załóżmy, że mamy system automatycznego wyłączania światła. Czujnik (jako moduł logiczny) podaje sygnał 1 oznaczający, że na dworze jest jasno. Wypadaoby wyłączyć oświetlenie. Jednak sprawdziliśmy, że nasz automatyczny wyłącznik zareaguje na niski poziom napięcia 0. Musimy zmienić sygnał z 1 na 0. W tym momencie przychodzi z pomocą układ dokonujący negacji logicznej.

Od razu można sobie wyobrazić kod binarny ramki Ethernet — rozpisanie go na papiere jest wręcz niewykonalne. Z pewnością nie jesteśmy ascetami i nie będziemy się dobrowolnie umartwiać. Rynek oferuje szereg doskonałych urządzeń, które są przeznaczone do ściśle określonych technologii transmisji.

Doskonałym przykładem są światłowodowe linie teleinformatyczne. Firmy, dysponujące kilkoma włóknami światłowodowymi, potrafią zapewnić dostęp do Internetu oraz łączność głosową między państwami. Jest to możliwe dzięki zastosowaniu komutacyjnych układów służących do łączenia i przełączania sygnałów cyfrowych, czyli układów kombinacyjnych.

Multiplekser — służy do „złączania” szeregu informacji w jeden sygnał, który będzie przesyłany pojedynczym kanałem transmisyjnym.

Demultiplekser — jak łatwo rozsyfrować, pełni funkcję odwrotną do multipleksera.

Koder — wywołuje proces formowania informacji do postaci cyfrowej. Proces ten nazywa się kodowaniem.

Dekoder — urządzenie to umożliwia odczytanie zakodowanej informacji.

Proces kodowania sygnału analogowego nazywamy modulacją, jeżeli nośnikiem informacji jest przebieg zmienny (np. sinusoidalny). Demodulacja jest procesem dekodowania sygnału dyskretnego.

Wprowadzenie do układów cyfrowych

Układ cyfrowy jest elementem elektronicznym, który realizuje operacje zgodnie z algbrą Boole’a. Procesor jest zaawansowanym układem logicznym.
Na poniższym diagramie (rysunek 2.6) przedstawiam przykładowy system, który wykorzystuje cyfrowy układ logiczny. Czujnik odbiera sygnał A zawierający informację, iż pada deszcz. Następnie przekazuje dalej parametr B (sygnał analogowy) do układu wejścia, ten zaś przetwarza sygnał analogowy na cyfrowy (A/C) i podaje wartość logiczną na wejście układu negocjacyjnego. Układ logiczny podejmuje decyzję (algebra Boole’a). Przetworzony sygnał D jest podawany w postaci logicznej na wyjściu układu (E). Układ sterujący wykonuje otrzymaną komendę, np. zamknięcie okien w budynku (F).

Rysunek 2.6. Przykładowy system z wykorzystaniem układu logicznego

Załóżmy, że układ logiczny realizuje funkcję NOT. Wartość 1 parametru C oznacza wykrycie opadów deszczu; analogicznie 0 określa ich brak. Układ decyzyjny otrzyma wartość 1, która na wyjściu będzie już wynosić 0. Zero dla układu sterującego oznacza podjęcie określonego działania.

Przełożmy ten przykład na system wykrywania pożaru. Czujnik odbiera sygnał o zabydymieniu. Układ logiczny otrzymuje bit równy 0. Negocjuje wynik i podaje do układu sterującego wartość 1, która stanowi sygnał do zwolnienia blokady (uruchomienia) systemu gaśniczego.

Powyższe dwa przypadki są oczywiście niezmiernie proste, aczkolwiek wystarczające do pokazania możliwości zastosowania układów kombinacyjnych.

Na rysunku 2.7 zamiastem poglądowny schemat przetwarzania sygnałów ciągłych w układach cyfrowych i analogowych. Informacja analogowa przed przetworzeniem w układzie logicznym musi zostać przetworzona na postać cyfrową (przetwornik A/C). Następnie poddawana jest właściwemu przetworzeniu i przywracana do postaci analogowej (przetwornik C/A).

Rysunek 2.7. Schemat przetwarzania sygnału w układzie a) cyfrowym; b) analogowym

Rysunek 2.8. Symbole podstawowych bramek logicznych

Każda bramka realizuje jakąś funkcję. Wynik operacji zależy od kombinacji danych wejściowych. Rezultaty działań ujęte są w tzw. tabeli prawdy dla bramki (zestawienie w tabeli 2.6).

Tabela 2.6. Tabela prawdy dla podstawowych operacji logicznych

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>NOT p</th>
<th>NOT q</th>
<th>p AND q</th>
<th>p OR q</th>
<th>p NAND q</th>
<th>p NOR q</th>
<th>p XOR q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poniższy diagram (rysunek 2.9) to przykładowy układ logiczny zbudowany w oparciu o pięć bramek. Do układu dociera kombinacja pięciu różnych parametrów wejściowych. Na tej podstawie zostaje wynegocjowany stan logiczny na wyjściu układu.
Rysunek 2.9. Przykładowy układ cyfrowy

W tym rozdziale dowiedzieliście się, jakimi cechami charakteryzuje się sygnał analogowy i cyfrowy. Przytoczyłem także podstawowe informacje dotyczące przekształcania sygnału A/C.

Powinniście posiąść już umiejętność identyfikacji bitu (impulsu) oraz przeliczania liczb systemu dziesiętnego na dwójkowy.

Poznaliście podstawy algebry Boole’a, układów logicznych i techniki cyfrowej. Ta minimalna wiedza jest niezbędna do dalszego zgłębiania tajników systemu okablowania strukturalnego.

Wiecie już, że sieć może być przyczyną błędnej zinterpretowania stanu bitu. Jeżeli nadajnik wyda wartość 0, a odbiornik zaklasyfikuje ją jako 1, powstanie błąd logiczny. W takim przypadku na wejściach układów cyfrowych pojawi się zafałszowany parametr sterujący. Skutkować to będzie złym wynikiem na wyjściu układu.

Oczywiście problem jest o wiele bardziej skomplikowany, a w dodatku można go rozwiązywać w oparciu o rachunek prawdopodobieństwa, wyliczając szansę wystąpienia akurat takiej kombinacji sygnałów, która będzie zgodna z jakimś poleceniem. W innym przypadku urządzenie powinno zgłosić błąd sterowania. Dywagacje teoretyczne warto odłożyć na bok. Wypadki z natury są niezamierzone. Często ich przyczyną jest spłat różnych okoliczności.
Ka
dza dodatkowa wiedza pozwala oddalić od systemu potencjalne zagrożenie dla środowiska pracy i przetwarzanych danych.

W dalszej części książki napiszę, jak zabezpieczyć urządzenia oraz system okablowania strukturalnego przed czynnikami wpływającymi negatywnie na jakość oraz spójność i ciągłość sygnału.

Kable miedziane

Kable miedziane dzielą się na dwie podstawowe grupy:

- ♦ kable koncentryczne,
- ♦ kable skręcane (czteroparowe lub wieloparowe).

Kable koncentryczne

Kable te praktycznie wyszły już z użycia w sieciach teleinformatycznych. Przedstawiam jednak ich krótką charakterystykę ze względu na to, iż podczas prac administra-

Jesieli staniemy oko w oko z siecią opartą na przewodach BNC, należy zastosować procedurę awaryjną — uciekamy! Oczywiście żartowałem. Ta archaiczna dziś technologia w przeszłości stanowiła podstawę większości sieci komputerowych. Z takim kablem możemy się jeszcze czasem spotkać w sieciach osiedlowych. Często za jego pomocą wykonywano „przerzutki” na sąsiedni blok. Z powodzeniem jest także stosowany w sieciach telewizji kablowych. Na rysunku 2.10 przedstawiam klasyczną budowę przewodu BNC.

Rysunek 2.10.
Kabel koncentryczny — budowa

Przewód koncentryczny obsługuje dwie technologie Ethernet:

- ♦ 10Base-2 („cienki” Ethernet) — grubość kabla ¼”.
- ♦ 10Base-5 („gruby” Ethernet) — grubość przewodu ½”.
Kabel koncentryczny ma impedancję falową o wartości 50 Ω, dlatego też sztuczne obciążenie (terminator) zamykające magistralę także powinno mieć rezystancję 50 Ω. Terminatory winny być też uziemione — do tego celu służą specjalne łańcuszki.

Sieci wykonywane przy wykorzystaniu kabla koncentrycznego funkcjonują w topologii magistrali. Stacje przyłączane są do sieci za pomocą trójnika. Jest to element, który ma trzy końcówki BNC. Jedną podłączamy do karty sieciowej, natomiast do drugiej i trzeciej podłączamy lewy i prawy segment sieci.

Kabel koncentryczny ma kilka podstawowych wad. Oto one:

♦ Słaba skalowalność — jeżeli chcemy podłączyć nową stację, jesteśmy zmuszeni przeciąć segment, aby zaimplementować dodatkowy trójnik.
♦ Ograniczenie szybkości transmisji do 10 Mb/s.
♦ W przypadku uszkodzenia kabla zazwyczaj unieruchomiony jest cały segment (domena kolizji).

Pewną zaletą jest natomiast możliwość instalacji dość długich segmentów. W przypadku „cienkiego” Ethernetu jest to 185 m, a „grubego” — 500 m.

Kable UTP

Kable UTP (ang. *Unshielded Twisted Pair*) stanowią najpopularniejszy środek transmisji danych w sieciach LAN. Jak wcześniej wspomniałem, w wyniku standaryzacji tego typu przewody obsługują całą gamę systemów teleinformatycznych — są to kable uniwersalne. Najczęściej służą do budowy okablowania poziomego. Popularna skrętka zawdzięcza swą nazwę splotowi norweskiemu, w którym żyła nadrzędna i podrzędna skręcone są ze sobą wokół wspólnej osi (rysunek 2.11).

Rysunek 2.11.
Splot dwóch żył kabla UTP (Molex)

Przewody UTP zostały sklasyfikowane według kategorii. W standardzie ISO podziału dokonano za pomocą liter (A, B, C, D, E, F), a standard EIA/TIA klasyfikuje wydajność przy użyciu cyfr (1, 2, 3, 4, 5, 6, 7). Więcej informacji o normach dotyczących kabli oraz całego systemu okablowania umieściłem w rozdziale poświęconym tej tematyce.

Pojęcia klasy i kategorii nie są równoznaczne. Pojęcie kategorii (np. 5., 6., 7.) odnosi się do pojedynczego elementu sieci pasywnej (kabla, gniazda, złączka, krosownicy itd.), natomiast klasa tyczy się całej sieci strukturalnej, która jest rozpatrywana pod względem wymogów aplikacji. Tak więc stosując elementy kategorii 5., możemy osiągnąć klasę D dla całego systemu, ale nie musimy. W „źle” wykonanej instalacji istnieje prawdopodobieństwo, iż nie osiągniemy wymogów norm dotyczących interesującej nas.
Rozdział 2. ♦ Przewodowe media transmisyjne

klasy. Przyczyn takiego stanu rzeczy może być wiele, początkowy od złego projektu i doboru niskiej jakości elementów, a skończywszy na nieprecyzyjnym i wadliwym wykonaniu systemu okablowania.

Z uwagi na fakt, iż w środowisku inżynierskim powszechnie stosuje się nomenklaturę EIA/TIA, właśnie ona będzie nadawała ton dalszemu opisowi. Kategoria kabla określa jego parametry, a tym samym wydajność (tabela 2.7).

Tabela 2.7. Klasy kabli UTP

<table>
<thead>
<tr>
<th>Kategoria</th>
<th>Opis</th>
<th>Przykładowy standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO EIA/TIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Kabel przeznaczony do systemów telefonicznych. Nie wykorzystujemy go do transmisji danych.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dwie pary przewodów; maksymalna częstotliwość 4 MHz (modem, głos).</td>
<td>PPP</td>
</tr>
<tr>
<td>3</td>
<td>Maksymalna częstotliwość 10 MHz. Przewód składa się z czterech par skręconych ze sobą żył.</td>
<td>10Base-T</td>
</tr>
<tr>
<td>C</td>
<td>Cztery pary żył. Częstotliwość do 16 MHz.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Cztery pary przewodów. Transmisja do 100 MHz.</td>
<td>100Base-TX</td>
</tr>
<tr>
<td>D+</td>
<td>Ulepszona kategoria 5. Gwarantuje transmisję z szybkością 1000 Mb/s.</td>
<td>1000Base-T</td>
</tr>
<tr>
<td>E</td>
<td>Częstotliwość do 250 MHz.</td>
<td>1000Base-T</td>
</tr>
<tr>
<td>F</td>
<td>Częstotliwość do 600 MHz.</td>
<td>1000Base-T</td>
</tr>
</tbody>
</table>

Kładąc na szale wady i zalety stosowania przewodów UTP co najmniej kategorii 6., robimy to tylko w celach informacyjnych. Warto mieć świadomość, jakimi atutami (możliwościami) dysponujemy, a co nas ogranicza.
Oto zalety UTP kategorii 6.:

♦ Skrętka 5e jest stosunkowo ekonomicznym medium.
♦ Nie przysparza trudności podczas dołączania terminatorów (o ile umie się to poprawnie zrobić, co nie jest zbyt skomplikowane).
♦ Obsługuje wiele standardów sieciowych (Ethernet, ATM, FDDI).
♦ Umożliwia transmisję do 1000 Mb/s.

Do wad skrętki można zaliczyć:

♦ podatność na uszkodzenia mechaniczne, szczególnie na zgniecenie np. przez nieuważną, aczkolwiek zgrabną panią sekretarkę,
♦ ograniczenie segmentu sieci do 100 m,
♦ słabą odporność na zakłócenia przewodów nieekranowanych.

Praktyczne podejście do przewodów UTP

Przewody skręcone dzielimy na ekranowane i nieekranowane. W zależności od tego, w jakim środowisku przyjdzie funkcjonować wdrażanej instalacji, wybieramy stosowny kabel.

![Rysunek 2.12. Nowe nazewnictwo kabli instalacyjnych](image)

Tabela 2.8. Nowe nazwy przewodów instalacyjnych

<table>
<thead>
<tr>
<th>Stara nazwa</th>
<th>Nowa nazwa</th>
<th>Kategoria kabla</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTP</td>
<td>U/UTP</td>
<td>5, 5e, 6</td>
</tr>
<tr>
<td>FTP, STP</td>
<td>F/UTP</td>
<td>5, 5e, 6</td>
</tr>
<tr>
<td>S-FTP, STP</td>
<td>SF/UTP</td>
<td>5, 5e, 6</td>
</tr>
<tr>
<td>S-STP</td>
<td>S/FTP</td>
<td>6, 7</td>
</tr>
</tbody>
</table>
Rozdział 2. Przewodowe media transmisyjne

Rysunek 2.13. Porównanie kabli miedzianych

Zwykły kabel U/UTP składa się z czterech par przewodów umieszczonych we wspólnej izolacji (rysunek 2.14).

A) **U/UTP**

Skrętka F/UTP dodatkowo zabezpieczona jest folią aluminiową ekranującą (chroniącą) wszystkie żyły w kablu (rysunek 2.15).

Rysunek 2.15. Kabel typu F/UTP

B) **F/UTP**

Skrętka S/FTP oprócz folii ekranującej poszczególne pary wyposażona jest dodatkowo w oplot miedziany, który znajduje się bezpośrednio pod izolacją zewnętrzną (rysunek 2.16).

Przewód SF/UTP chroni i ekranuje żyły kabla poprzez cztery warstwy: izolację zewnętrzną, folię ekranującą, oplot miedziany oraz folię poliestrową (rysunek 2.17).
Rysunek 2.16.
Kabel typu S/FTP

C) S/FTP

Rysunek 2.17.
Kabel typu SF/UTP

D) SF/UTP

Kabel U/FTP cechuje się osobnym ekranowaniem poszczególnych par (rysunek 2.18).

Rysunek 2.18.
Kabel typu U/FTP

E) U/FTP

Na rysunku 2.19 przedstawiam przewód U/UTP z widocznym oznaczeniem producenta i wyrażonej w metrach odległości od początku szpuli.

Na rysunku 2.20 doskonale widać ekran (folię) wychodzący spod zewnętrznej izolacji przewodu F/UTP. Analogiczną sytuację dla kabla SF/UTP można zobaczyć na rysunku 2.21.
Bardzo ważną kwestią jest sprawdzenie, czy kable są niepalne i wolne od halogenków (niewydzierające ich). Powłoki przewodów typu LS (ang. Low Smoke) wydzielają minimalną ilość dymu. Uzyskujemy przez to około 90% widoczności w trakcie pożaru. Ma to zasadnicze znaczenie podczas akcji ewakuacyjnej i ratowniczej, gdyż trakty komunikacyjne (droga ucieczki) są widoczne (niskie zadymienie). W przypadku powłoki z PVC widoczność ograniczona jest do 10%, co znacznie utrudnia poruszanie się w ciągach komunikacyjnych. Dodatkowo substancje wydzielane w trakcie spalania są szkodliwe dla organizmu. Wielkim zagrożeniem w przypadku PVC jest możliwość przeniesienia się pożaru na inne kondygnacje poprzez przepusty w stropach i ścianach. Tabela 2.9 to zestawienie popularnych kabli instalacyjnych uwzględniające rodzaj dostępnych powłok.
Tabela 2.9. Zestawienie popularnych kabli instalacyjnych

<table>
<thead>
<tr>
<th>Typ kabla</th>
<th>Powłoka kabla</th>
<th>Popularne długości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kat. 5e U/UTP</td>
<td>PVC i LS0H</td>
<td>500 m szpula, 305 m karton</td>
</tr>
<tr>
<td>Kat. 6 U/UTP</td>
<td>PVC i LS0H</td>
<td>500 m szpula</td>
</tr>
<tr>
<td>Kat. 6 U/FTP</td>
<td>LSFR0H</td>
<td>500 m szpula</td>
</tr>
<tr>
<td>Kat. 5e F/UTP</td>
<td>PVC i LS0H</td>
<td>500 m szpula, 305 m karton</td>
</tr>
<tr>
<td>Kat. 5e SF/UTP</td>
<td>PVC i LSFR0H</td>
<td>500 m szpula</td>
</tr>
<tr>
<td>Kat. 6 S/FTP</td>
<td>LS0H</td>
<td>500 m szpula</td>
</tr>
<tr>
<td>Kat. 7 S/FTP</td>
<td>LSFR0H</td>
<td>500 m szpula</td>
</tr>
</tbody>
</table>

Tabela 2.10. Powłoki przewodów a normy

<table>
<thead>
<tr>
<th>Powłoka</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>IEC 60332-1 (ang. flame-retardant)</td>
</tr>
<tr>
<td></td>
<td>IEC 601034 (ang. low smoke)</td>
</tr>
<tr>
<td></td>
<td>IEC 60332-1 (ang. flame-retardant)</td>
</tr>
<tr>
<td>LS0H</td>
<td>EC 60754-1 (ang. halogen-free)</td>
</tr>
<tr>
<td></td>
<td>IEC 601034 (ang. low smoke)</td>
</tr>
<tr>
<td></td>
<td>IEC 60332-3c (ang. flame-retardant)</td>
</tr>
<tr>
<td>LSFR0H</td>
<td>IEC 60754-1 (ang. halogen-free)</td>
</tr>
</tbody>
</table>

Dokonując zakupu kabla UTP, należy zwrócić uwagę na kilka niżej wymienionych elementów.

- **Parametry elektryczne**: rezystancja, np. podawana w Ω/km, oraz propagacja.
- **Parametry mechaniczne**: liczba par, średnica przewodnika, średnica przewodnika w izolacji, zewnętrzna średnica kabla, rodzaj powłoki, dopuszczalny promień zгиęcia, waga wraz z opakowaniem.
- **Parametry transmisyjne**: NEXT, PS NEXT, FEXT, ELFEXT, ACR, Return Loss, częstotliwość kabla oraz maksymalne tłumienie.

Oto krótki opis parametrów transmisyjnych.
Rozdział 2. ♦ Przewodowe media transmisyjne

Return Loss to straty odbiciowe. Parametr ten definiuje stosunek mocy sygnału wprowadzanego do medium (toru) transmisyjnego do mocy sygnału odbitego. Sygnał odbity (echo) powstaje na skutek niedopasowania impedancji lub nieregularności w łączu (wady wtyczek i gniazda). Jest to bardzo ważny parametr, który określa poziom szkodliwej fali zwrotnej.

ACR (ang. Attenuation to Crosstalk Ratio) to parametr wyliczany, który pośrednio określa jakość kabla. Jeżeli ACR jest mniejszy od 0, odbiornik zinterpretuje szum jako sygnał użyteczny. Transmisja nie zostanie zdekodowana.

Częstotliwość kabla (ang. frequency) to parametr wyrażany w MHz.

Maksymalne tłumienie (ang. max. attenuation) — wartość wyrażana w dB/100 m.

NEXT (ang. Near-End Crosstalk) jest to przesłuch zблиżny między dwoma parami skrętek znajdującymi się w tym samym kablu. Określa on różnicę mocy sygnału nadawanego w parze zakłócającej i sygnału powstałego w parze zakłóconej. Pomiar NEXT jest dokonywany po stronie nadajnika w torze transmisyjnym. Parametr ten mierzony jest w decybelach (dB).

PS NEXT (ang. Power Sum NEXT) to parametr określający przesłuch NEXT skumulowany (indukowany) w jednej parze, odzwierciedlający wpływ na nią sumy sygnału trzech pozostałych par skrętek.

ELFEXT (ang. Equal-Level Far End Crosstalk) to różnica między wartością FEXT a wartością tłumienia dla określonego toru transmisyjnego. Nie zależy od długości linii.

Nierozerwalnie z kablami UTP wiązą się terminy sekwencji i polaryzacji. Sekwencja oznacza porządek żył kabla, a polaryzacja definiuje kształt gniazda i wtyczek. Więcej informacji na ten temat znajduje się w rozdziale 3.

Uwaga

Światłowody

Gratuluję zainteresowania tym niezmiernie ciekawym i wdzięcznym medium. Światłowody (ang. Fiber Optic Cable) stanowią przyszłość teleinformatyki i nikt nie neguje konieczności migracji w tym kierunku. Być może wkrótce kable światłowodowe zastąpią większość kabli miedzianych w infrastrukturach informatycznych.

Dlaczego światłowód? Do najczęściej wymienianych powodów możemy zaliczyć:

♦ dużą przepustowość;
♦ odporność na zakłócenia (elektromagnetyczne);
♦ bezpieczeństwo sygnału (stosunkowo trudno „podsluchić” dane przesyłane światłowodem);
♦ większą długość segmentów sieci (lub odległość między wzmacniaczami); jest to wynikiem dużo niższego poziomu tłumienia w porównaniu z kablami UTP;
♦ bezpieczeństwo przyszłego rozwoju sieci;
♦ obsługę wielu technologii transmisji;
♦ brak iskrzeń i zwań;
♦ niezawodność;
♦ relatywnie małe wymiary i masę;
♦ skalowalność.

W tabeli 2.11 zawarłem typowe długości linii transmisyjnych w zależności od zastosowanego medium bez konieczności wzmacniania sygnału. Zestawione wartości są odbiciem zaleceń instalacyjnych firmy Molex Premise Networks®.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Odległość bez wzmacniania sygnału</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przewód miedziany</td>
<td>1,1 km</td>
</tr>
<tr>
<td>Kabel światłowodowy MM (850 nm)</td>
<td>12 – 15 km</td>
</tr>
<tr>
<td>Kabel światłowodowy MM (1300 nm)</td>
<td>25 – 35 km</td>
</tr>
<tr>
<td>Kabel światłowodowy SM (1310 nm)</td>
<td>50 – 80 km</td>
</tr>
<tr>
<td>Kabel światłowodowy SM (1550 nm)</td>
<td>150 – 2500 km</td>
</tr>
</tbody>
</table>

Żeby zrozumieć sens i zasadę działania owego medium, musimy przypomnieć sobie kilka podstawowych praw fizyki.

w impuls świetlny. Dokonuje tego nadajnik (ang. optical transmitter). Po dotarciu do celu impuls jest odbierany przez odbiornik (ang. optical receiver) i przekształcany na sygnał elektryczny.

Rysunek 2.22. Zjawisko odbicia

Proces transmisji przez światłowód rozpoczyna się od prawidłowego „wstrzelenia” impulsu (pod odpowiednim kątem). Następnie promień „wędruje” aż do napotkania na swojej drodze środowiska o innym współczynniku załamania (płaszczy włókna, n2). Odbija się od niego i pokonuje drogę wewnętrzną włókna aż do napotkania ponownie innego środowiska. Cała transmisja polega na nieustannym (wewnętrznym) odbijaniu się impulsu, dopóki nie osiągnie on celu (rysunek 2.23).

Rysunek 2.23. Zasada działania światłowodu

Kąt krytyczny α jest minimalnym kątem między nakreśloną linią prostopadłą do powierzchni ośrodka a promieniem padającym, przy którym zachodzi jeszcze zjawisko całkowitego odbicia — jest to apertura numeryczna.

Indeks skoku (kroku) określa długość odcinka światłowodu, jaką przebywa impuls bez odbicia wewnętrznego.

Rysunek 2.24 to ilustracja zasady działania światłowodu wielomodowego. Parametr α określa maksymalny kąt, pod którym można wprowadzić światło przy jednoczesnym zachowaniu całkowitego odbicia wewnętrznego. Po przekroczeniu tej wartości włókno nie spełni swojej roli. Nastąpi zjawisko nazywane w fizyce odbiciem, czyli nagłą zmianą kierunku rozchodzenia się fali na granicy dwóch ośrodków, tak iż pozostaje ona wewnątrz ośrodka (włókna), w którym się rozchodzą. Światłowody często nazywane są falowodami.

W podstawowej komunikacji optycznej powszechnie wykorzystuje się niewidzialne promieniowanie fal podczerwieni (IR). Zakres ten znajduje się bezpośrednio poniżej częstotliwości światła widzialnego. Są to kolejne okna optyczne:

- I okno: 850 nm,
- II okno: 1310 nm,
- III okno: 1550 nm,
- IV okno: 1625 nm.

Światło widzialne o długości od 770 nm (czerwone) do 330 nm (niebieskie) nie jest wykorzystywane ze względu na łatwość interferencji z widmem promieniowania słonecznego.

Wprowadzając sygnał do światłowodu, należy upewnić się, czy połączenie (styk) źródła z włóknem umożliwia całkowite wewnętrzne odbicie światła (apertura numeryczna).

Największym problemem związanym z kablami światłowodowymi jest zjawisko dyspersji. Mówiąc w poważnym uproszczeniu, polega ono na zniekształceniu (spłaszczeniu) sygnału na wyjściu światłowodu. Powoduje to ograniczenie długości segmentu w technologii Ethernet do 5 km — technologia 100Base-LX (Full-Duplex). Wyróżniamy trzy rodzaje dyspersji.
Dyspersja modowa — przyczyną jej powstawania jest różnica w kątach, pod jakimi wprowadzamy impuls do włókna, przez co światło pokonuje różną drogę w rdzeniu i zmienia się czas jego przejścia.

Dyspersja chromatyczna — światło jest falą; jeżeli do jego wygenerowania używamy np. diody LED (a nie monochromatycznego źródła światła), może zajść zjawisko poszerzenia sygnału. Światło o różnej długości fali przebędzie włókno z różną prędkością.

Dyspersja falowodowa — wynika ona z niecałkowitego odbicia wewnętrzne.

Część fali przenika wówczas do osłony włókna światłowodowego.

Budowa światłowodu

Kabel światłowodowy ma kształt najczęściej cylindryczny (ovalny). Zwany jest czasami falowodem — oczywiście nazwa ta jest w pełni uzasadniona. Połączenie światłowodowe ustanawiane jest za pomocą dwóch włókien: jedno służy do nadawania, a drugie — do odbierania. W związku z tym każdy przewód musi zawierać co najmniej dwa włókna, jednak ze względów praktycznych najczęściej stosuje się przewody wielowłoknowe. Są one pokrywane płaszczem (osłonką), a dodatkowo wszystkie pojedyncze włókna są „zapakowane” w jedną tubę — razem tworzy to jeden przewód.

Promień świetlny wstrzelony do rdzenia pod odpowiednim kątem nazywany jest modem światłowodowym. Źródłem światła mogą być diody LED lub laserowe. Jako detektory (odbiorniki) stosuje się fotodiody półprzewodnikowe, które zamienią sygnał świetlny na elektryczny.
Włókno światłowodowe najczęściej wykonuje się z:

- dwutlenku krzemu (SiO₂) — kwarcu;
- plastiku;
- polimetakrylanu akrylu (PMMA);
- polistyrenu (PS);
- poliwęglanu (PC).

Warstwy ochronne włókien wykonuje się z polichlorku winylu (PVC) lub polietylenu (PE).

Klasyfikacja światłowodów

W praktyce można wyróżnić dwa podziały kabli światłowodowych:

- ze względu na liczbę modów (jednomodowe i wielomodowe);
- ze względu na rodzaj tuby (osłony zewnętrznej przewodu).

Oba powyższe podziały są niezależne i stosowane na różnych etapach projektowania.

Światłowód jednomodowy (ang. *Single Mode* — SM), jak sama nazwa wskazuje, przystosowany jest do przesyłania w rdzeniu pojedynczego modu (promienia). Średnica rdzenia zawiera się w wąskim przedziale 8 – 9 µm, natomiast sam przewód ma standardową średnicę 125 µm (rysunek 2.27).

Oto zalety światłowodu jednomodowego:

- Przesyłanie jednego modu ogranicza zjawisko dyspersji.
- Pozwala on na tworzenie bardzo długich odcinków bez wzmacniania sygnału (nawet do 150 km).
- Posiada szerokie pasmo przenoszenia i niską tłumienność.

Konstrukcja wielomodowa pozwala na przesyłanie kilku pakietów danych — wiązek światła (rysunek 2.28). W wyniku takiej funkcjonalności łączna przepustowość traktu znacznie wzrasta, jednak nie odbywa się to bez poniesienia dodatkowych kosztów. Przesyłanie kilku promieni (modów) jednocześnie przyczynia się w dużym stopniu do rozmycia impulsu na wyjściu. Jest to główna przyczyna ograniczenia odległości, na jaką można przesyłać dane w takim światłowodzie.

Rysunek 2.28. Dwa rodzaje włókien: a) jednomodowe, b) wielomodowe

W celu zgłębiania tajników optycznej transmisji danych należy odwołać się do dyscypliny szczegółowej, jaką jest optyka telekomunikacyjna. Dla naszych potrzeb wystarczająca jest wiedza z zakresu podstawowej budowy światłowodu oraz „wpuszczania” impulsu do włókna. W tabeli 2.12 zawarłem zestawienie kategorii włókien światłowodowych przy uwzględnieniu ich rodzaju oraz źródła światła.

Kable w luźnej tubie (ang. *Loose Tube Cable*) konstrukcyjnie charakteryzują się zawartością żelu wewnątrz tuby okalającej włókna (rysunek 2.29). Zabieg ten chroni światłowód przed naprężeniami, wilgocią oraz wahaniem temperatur. Kable te stosuje się zazwyczaj na zewnątrz budynków z uwagi na ich lepszą odporność na działanie warunków atmosferycznych — szczególnie chodzi o zjawisko wydłużania i skracania kabla w wyniku oddziaływania temperatury bez negatywnego wpływu na włókna.
Tabela 2.12. Klasyfikacja włókien światłowodowych

<table>
<thead>
<tr>
<th>Kategoria włókna</th>
<th>Rodzaj włókna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wielomodowe</td>
<td></td>
</tr>
<tr>
<td>OM1</td>
<td>62,5/125 μm</td>
</tr>
<tr>
<td>OM1 PLUS</td>
<td>62,5/125 μm</td>
</tr>
<tr>
<td></td>
<td>optymalizowany pod laser</td>
</tr>
<tr>
<td>OM2</td>
<td>50/125 μm</td>
</tr>
<tr>
<td>OM2 PLUS</td>
<td>50/125 μm</td>
</tr>
<tr>
<td></td>
<td>optymalizowany pod laser</td>
</tr>
<tr>
<td>OM3</td>
<td>50/125 μm</td>
</tr>
<tr>
<td>OM3 PLUS</td>
<td>50/125 μm</td>
</tr>
<tr>
<td></td>
<td>optymalizowany pod laser</td>
</tr>
<tr>
<td>(światło VCSEL)</td>
<td></td>
</tr>
<tr>
<td>Jednomodowe</td>
<td></td>
</tr>
<tr>
<td>OS1</td>
<td>9/125 μm</td>
</tr>
</tbody>
</table>

Rysunek 2.29.

Kable o konstrukcji luźnej i ścisłej tuby

Kable występują także w wersjach SIMPLEX (pojedynczej) i DUPLEX (podwójnej) — najczęściej są to przewody o konstrukcji ścisłej tuby wykorzystywane w kablach krosowych (rysunek 2.30). Rzeczywisty wygląd kabla o konstrukcji DUPLEX można zobaczyć na rysunku 2.31, natomiast na rysunku 2.32 przedstawiam światłowód dwunastowłóknowy ogólnego zastosowania. Jak widać na rysunku 2.33, budowa kabla sześciowłókowego jest bardzo podobna do konstrukcji przewodów o większej liczbie włókien.
Rozdział 2. ♦ Przewodowe media transmisyjne

Rysunek 2.30.
Duplex i Simplex

Rysunek 2.31.
Kabel światłowodowy
MM OM1 62,5/125
Duplex-Zipcord
(Molex)

Rysunek 2.32.
Dwunastowłóknowy
światłowodowy kabel ogólnego stosowania
MM 62,5/125, LSZH,
luźna tuba (Molex)

Rysunek 2.33.
Sześciowłóknowy
wewn./zewn. kabel światłowodowy SM
9/125, ścisła tuba
(Molex)

Uwaga
W powyższych rysunkach nie zostały zachowane proporcje. Jest to zabieg celowy mający ułatwić zrozumienie obrazowanego pojęcia.

Podstawowym elementem uzupełniającym linie światłowodowe jest zestaw pozwalający połączyć przewody o konstrukcji luźnej tuby z przewodami z tubą ścisłą (rysunek 2.34).

Rysunek 2.34.
Zestaw przejściowy
światłowodu luźna tuba/ścisła tuba,
6 włókien (Molex)
Sposoby łączenia włókien

Włókna łączymy na trzy sposoby. Możemy je spawać, kleić oraz skorzystać ze złączek mechanicznych. Spośród tych trzech metod najlepszą, a zarazem i najdroższą (głównie z powodu kosztu spawarki) jest spawanie włókien. Stosując to rozwiązanie, uzyskamy najwyższą klasę połączenia. łączenie mechaniczne jest bardzo proste i szybkie, ale znacząco wpływa na pogorszenie parametrów źródła: podwyższa wartość parametru Insertion Loss i obniża Return Loss. Zastosowanie tego rozwiązania dotyczy głównie światłowodów z włóknami wielomodowymi. Przy kablach optycznych jednomodowych raczej nie należy korzystać z połączeń mechanicznych ze względu na jakość uzyskiwanego łącza.

W celu zakończenia włókna metodą spawania wykorzystuje się złączki typu „pigtail” (rysunek 2.35). Są to krótkie odcinki włókien światłowodowych zakończonych fabrycznie z jednej strony złączem. Dodatkowo stosuje się specjalne osłonki (rysunek 2.36), które nasuwa się na kabel w celu zabezpieczenia miejsca spawu. Rozwiązaniem alternatywnym wobec spawania jest klejenie włókna.

Rysunek 2.35.
Zestaw pigtaili
(Ortronics)

Rysunek 2.36.
Osłonka na spaw
45 mm (Molex)
Zastosowanie złączki mechanicznej polega na ręcznym osadzeniu włókien w dwóch końcówkach złącza i precyzyjnym skręceniu ich (rysunek 2.37).

Rysunek 2.37.
Złączka mechaniczna
Ultrasplice (Molex)

Złączki i spawy możnaukaładać w specjalnych kasetach światłowodowych (rysunek 2.38) w celu zapewnienia im dodatkowego bezpieczeństwa fizycznego oraz nadania poręczności łączom. Aby natomiast zabezpieczyć samo złącze, zakłada się na nie odpowiadający mu rodzaj zaślepki (rysunek 2.39).

Rysunek 2.38.
Uniwersalna kaseta
na złącza i spawy
światłowodowe
(Molex)

Rysunek 2.39.
Zaślepka ST (Molex)

Złączka mechaniczna pozwala na połączenie w bardzo precyzyjny sposób dwóch włókien wielomodowych o buforach z zakresu od 250 do 900 µm.

Jakość połączenia uzyskanego przy użyciu metody klejenia włókien w złączu światłowodowym w dużej mierze zależy od dokładności wyszlifowania czoła włókna przez instalatora. Niektóre firmy posiadają w swojej ofercie złącz na światłowodowe z już wyszlifowanymi czołami. Zadaniem instalatora jest w tym przypadku wprowadzenie włókna do złącz jak najbliżej znajdującego się w nim czoła.
Przyczynami strat na lączach są (rysunek 2.40):

♦ niezachowanie współosiowości włókien,
♦ zjawisko odbicia światła w szczelinie powietrznej,
♦ niepoprawne dopasowanie pola (przekroju).

Z uwagi na powyższe fakty należy wykazać się wielką starannością przy łączeniu włókien.

a) szczelina między włóknami

b) błąd współosiowości

c) różnice w średnicy włókien

d) złe cięcie włókna

Rysunek 2.40. Błędy popełniane przy łączeniu włókien

Firma Legrand Polska mocno akcentuje zalety stosowania fabrycznie zakończonych włókien światłowodu. Szpula (rysunek 2.41) z wiązkami (6 lub 12 włókien) dostarczana jest wraz z wypełnionym arkuszem wyników testu (rysunek 2.42). Długość wiązek wynosi od 20 do 200 metrów.
Rozdział 2. ♦ Przewodowe media transmisyjne

Rysunek 2.41.
Szpula z fabrycznie zakończonym światłowodem (Legrand)

Rysunek 2.42.
Arkusz z wynikami pomiarów (Legrand)

Złącza światłowodowe (optyczne)

Do najbardziej popularnych złączy światłowodowych należą interfejsy:
♦ SC (rysunki 2.43 i 2.44);

Rysunek 2.43.
Złącze SC (Ortronics)
Rysunek 2.44.
Złącze SC Ortronics
z osadzonym włóknem

♦ Duplex-SC, zalecane przy nowych instalacjach (rysunek 2.45);

Rysunek 2.45.
Złącze SC MM Duplex
(Molex)

♦ ST (rysunek 2.46);

Rysunek 2.46.
Złącze ST (Ortronics)

♦ MTRJ (rysunek 2.47);

Rysunek 2.47.
Złącze typu MTRJ
(Ortronics)

♦ LC (rysunek 2.48), Mini LC;
♦ FC (rysunek 2.49);

♦ E-2000, Mini E-2000;
♦ FDDI.

Czoło włókna światłowodowego może być polerowane na dwa sposoby o nazwach APC i PC. Ta druga metoda charakteryzuje się kątem prostym polerowanego czoła (ang. Physical Contact — PC), natomiast w metodzie APC czoło włókna polerowane jest pod kątem 7 – 8 stopni. Dzięki temu zabiegowi uzyskuje się mniejszą tłumienność niż w złączu typu PC.

Przy instalacjach pojedynczych złączy SC i ST należy zwrócić uwagę, aby nie pomylić włókien nadawczych i odbiorczych. W ofercie producentów okablowania możemy także znaleźć akcesoria zabezpieczające złącza światłowodowe przed zanieczyszczeniami osadzającymi się na włóknach.

Decydując się na standard Ethernet, mamy już narzucony rodzaj medium (wielomodowy lub jednomodowy światłowód albo też kabel UTP), jednak podczas doborania konstrukcji musimy sami wykażać się rozwagą. W normach nie jest np. ujęte, czy włókna mają być w luźnej tubie. Należy poważnie rozważyć fakt, iż to na barkach projektanta spoczywa odpowiedzialność za dobrym fizycznych parametrów kabla.

Oto przykładowe standardy transmisji światłowodowej:
♦ 100Base-FX (802.3u) — 100 Mb/s;
♦ 1000Base-LX (802.3z) — 1000 Mb/s;
♦ 1000Base-SX (802.3z) — 1000 Mb/s;
♦ 10 Gb/s Ethernet (802.3ae) — 10000 Mb/s;
♦ FDDI (ang. Fiber Distributed Data Interface) — 100 Mb/s;
♦ ATM (ang. Asynchronous Transfer Mode) — najczęściej 155 lub 622 Mb/s.
Ile razy można spojrzeć w światłowód?

Tylko dwa...

...raz lewym okiem, a drugi raz prawym.

Warto pamiętać o podstawowych zasadach bezpieczeństwa szczególnie wtedy, gdy źródłem impulsu jest dioda laserowa. Ludzka žrenica jest bardzo wraźliwa na takie doświadczenia.
Skorowidz

10 Gb/s Ethernet, 59
1000Base, 39
1000Base-CX, 110
1000Base-LX, 59, 110, 112
1000Base-SX, 59, 110, 112
1000Base-T, 39, 110, 112
100Base-CX, 112
100Base-FX, 59, 110, 111
100Base-LX, 48, 111
100Base-LX10, 111
100Base-SX, 112
100Base-T2, 112
100Base-T4, 112
100Base-TX, 17, 39, 110, 111
10Base-2, 37
10Base-5, 37
10Base-FL, 110
10Base-T, 39, 78, 110
10GBase-E, 112
10GBase-L, 112
10GBase-LX4, 112
10GBase-S, 112
356A, 77

architektura, 281
architektura logiczna systemu okablowania strukturalnego, 61
ATM, 59, 281
autorytet
administracyjny, 141, 142
charakterystyczny, 141, 142
finansowy, 141, 142
formalny, 141, 142
techniczny, 141, 142
awaria, 207
przełącznika, 213
przyczyna, 214
skutec, 207, 214
sprzętu, 126, 213
systemu kontroli dostępu, 219
systemu okablowania, 211
układu chłodzenia, 216
układu przeciwpożarowego, 218
urządzeń aktywnych, 213
zasilania, 214

A

A/C, 34
ACR, 44, 45
adres IP, 31
agregat prądotwórczy, 121, 215, 217
algebra Boole’a, 32
algorytm zarządzania bezpieczeństwem sieci, 209
algorytm zarządzania incydentem, 208
ANSI, 181
APD, 48
apertura numeryczna, 48, 281
backup danych, 195
bajt, 281
bandwidth, 281
baseband, , pasmo podstawowe
bezpieczniki, 217
bit, 281
błędy, 27
BNC, 37
BPD, 66
budynkowy punkt dystrybucyjny, 66
bufor w światłowodzie, 282
C
- C/A, 34
- centralny punkt dystrybucyjny, 66
- centrum danych, 123, 124
- cienki Ethernet, 37
- CPD, 66
- CSMA/CD, 16, 197, 282
- częstotliwość kabla, 44, 45

D
- DAS, 196, 197, 282
- data center, 123
- decybel (dB), 282
- dekoder, 33
- demultiplekser, 33
- detektor sygnału, 48
- dielkrtyk, 282
- dioda, 282
 - elektroluminescencyjna, 48
 - laserowa, 48
- dokumentacja projektowa
 - cele, 139
 - proces tworzenia, 141
 - zadania, 139
- dokumentacja projektowa, 139
- dokumenty legislacyjne, 183
- dopelnienie, 32
- dopuszczalny promień zgięcia, 44
- duplex, *Patrz* kabel światłowodowy dwużyłowy DUPLEX, 52
- dwójkowy system liczbowy, 29
- dwustopniowa budowa systemu okablowania strukturalnego bez redundancji torów transmisyjnych, 192
- dyspersja, 48, 282
 - chromatyczna, 49, 282
 - falowodowa, 49, 282
 - modowa, 49, 282
 - świetła, 48
- EIA/TIA-568A, 183
- EL FEXT, 154, 155
- elektroniczna kontrola dostępu, 137
- ELFEXT, 44, 45, 282
- EN 50 173, 183, 184
- EN 50 173-1, 186
- EN 50 174-2, 186
- EN 50174, 184
- Ethernet, 16, 59, 110, 197
- ETSI, 181

E
- E-2000, 59
- EIA 568A, 77
- EIA 568B, 76
- EIA/TIA, 21, 182
- EIA/TIA 568, 21, 183, 186
- EIA/TIA 568A, 183
- EIA/TIA 569, 183, 186
- EIA/TIA 606, 183
- EIA/TIA 607, 183

F
- F/UTP, 40, 42
- falowód, 49
- FC, 59
- FDDI, 59
- ferrula, 282
- FEXT, 44, 45, 282
- fotodetektor, 48, 282
- fotodioda lawinowa APD, 48
- FRD, 282
- FTP, 40
- FTTO, 116, 117, 284
- FTTX, 116
- funkcja NOT, 34

G
- generator optyczny, *Patrz* źródło światła
- główny punkt dystrybucyjny, 67, 68
- gniazdo, 71
- DLP™, 119, 120
- RJ-45, 20
- gruby Ethernet, 37
- gwarancja
 - aplikacyjna, 157
 - elementowa, 157
 - systemowa, 157
- HFC-227ea, 239, 240
- HSSG, 112

H
- ICT, 13
- IDF, 67
- IEEE, 181, 283
- IEEE 802.3u, 17
- IETF, 182
- iloczyn logiczny, 32
- impedancja charakterystyczna, 154
instalator systemu okablowania, 174
instytucje standaryzujące, 181
inteligentny budynek, 124
interfejs modularny, 283
Internet, 14, 283
intranet, 14, 283
IPv4, 31
IPv6, 31
ISO, 181, 283
ISO/IEC 11 801, 183
ISO/IEC IS 11 801 2002, 186
ISO/OSI, 17
IT, 13
J
Jankowski Janusz, 237, 258
K
cable, 15
elektryczne, 161
F/UTP, 41, 43
informatyczne, 161
koncentryczne, 37
krosowe, 103, 105, 283
miedziane, 37, 162
S/FTP, 42
SF/UTP, 42, 43
sieciowe, 15
skręcone, 37
stacyjne, 283
światłowodowe, 49, 282
teleinformatyczne, 161
U/FTP, 42
U/UTP, 41, 43
UTP, 38
kanaly kablowe, 172
karty sieciowe, 15
kaseta na złącza, 55
klaster, 199, 201, 283
klasy kabli UTP, 39
klasyfikacja światłowodów, 50
kod gniazda, 283
kod kolorowy (barwny), 283
dener, 33
kolizje, 16
dołominy DLP, 172
kondygnacyjny punkt dystrybucyjny, 66
koniekcja, 32
kosztorys, 150
KPD, 66
kwantowanie, 283
L
LAN, 14, 143, 197, 283
LC, 58, 59
LD, 48
LED, 48
Legrand, 56, 157
liczba par, 44
linia transmisyjna, 283
lokalny punkt dystrybucyjny, 66
LPD, 66
LSOH, 44
LSFR0H, 44
LSZH, 52
luźna tuba, 283
Ł
ład informacyjny, 13
M
maksymalne tłumienie, 44, 45
MAN, 14, 284
MDF, 67, 68
medium transmisyjne, 15
metody archiwizacji danych, 196
DAS, 196, 197
NAS, 196, 197, 198
SAN, 196, 198, 199, 200, 201, 202, 203
metody wykonywania backupu, Patrz metody archiwizacji danych
miernik dla instalacji miedzianych, 152
miernik tłumienia, 176
Mini E-2000, 59
minimalny promienia zgięcia, 161
MM, 51
MMJ, 79, 284
moc
bierna, 118
chwilowa, 118
czynna, 118
pozorna, 118
sygnału odbitego, 45
sygnału wprowadzanego, 45
mod, 284
model
gwiazda + pierścień, 190
ISO/OSI, 16, 17
podwójna gwiazda, 189
podwójny pierścień, 190
pojedynczy pierścień, 191
redundancji, 191
modulacja, 33
Molex Premise Networks®, 157
multiplekser, 33
MUTO, 114, 115, 284

nadajnik, 15, 47
nadmiarowość, Patrz redundancja
narzędzie do zdejmowania izolacji, 178
narzędzie zaciskowe, 177
NAS, 196, 197, 198, 284
negacja logiczna, 32
NEXT, 44, 45, 154, 284
Niziński Grzegorz, 237, 251
norma
EIA/TIA 568, 183, 186
EIA/TIA 568A, 183
EIA/TIA 569, 183, 186
EIA/TIA 606, 183
EIA/TIA 607, 183
EIA/TIA-568A, 183
EN 50 173, 183, 184
EN 50 173-1, 186
EN 50 174-2, 186
EN 50174, 184
ISO/IEC 11 801, 183
ISO/IEC IS 11 801, 2002, 186
PN-EN 50174, 184
PN-EN 50174-1, 184
PN-EN 50174-2, 184, 185
PN-EN 50174-3, 184
SP-2840, 183
TIA/EIA-568-B.1, 184
TIA/EIA-568-B.2, 184
TIA/EIA-568-B.3, 184
TSB 36, 183
TSB 40, 183
TSB 67, 183
TSB 72, 183
NOT, 34

ochrona kabli, 160, 163
ochrona przeciwpożarowa, 126
odbiornik, 15, 47
odbior systemu okablowania, 151
odległości między wzmacniaczami, 46
okablowanie, 20
 międzybudynkowe, 61, 65
 normy, 181

ponowne, 61, 64
poziome, 24, 61, 284
strukturalne, 15, 18, 19, 24, 195
okna optyczne, 48
OPEN DECONNET, 78
operacje boole’owskie, 32
opóźnienie, 153
Oracle RAC, 199
organizacje standaryzujące, 181
 ANSI, 181
 EIA/TIA, 182
 ETSI, 181
 IEEE, 181
 IETF, 182
 ISO, 181
 Unia Europejska, 182
osłonka na spaw, 54
OTDR, 284

panel krosowy półokrągły, 255
parametry
 elektryczne, 44
 mechaniczne, 44
 transmisyjne, 44
Parys Aleksandra, 237, 238
pasma podstawowe, 281
PCS, 66, 68
pigtaili, 54
ponowne okablowanie szkieletowe, 284
płaszcz światłowodu, 284
PN-EN 50174, 184
PN-EN 50174-1, 184
PN-EN 50174-2, 184, 185
PN-EN 50174-3, 184
polaryzacja, 284
polerowanie
 APC, 59
 PC, 59
POP, 68, 284
pośredni punkt dystrybucyjny, 67
Power Sum NEXT, 284
powłoka kabla, 44
poziom
 niski, 27
 wysoki, 27
PPP, 39
prawdopodobieństwo wystąpienia awarii, 205, 208
Prawo Ohma, 118
proces zarządzania bezpieczeństwem sieci, 208
projekt informatyczny
 cel, 140
 audyt, 140
definicja wymagań, 140
obsługa, 140
proces projektowania systemu, 140
realizacja, 140
testowanie, 140
wdrożenie, 140
projekt sieci, 221
projekt systemu okablowania strukturalnego, 143
promień zgęcenia kabla, 284
propagacja sygnału, 47
protokół
 CSMA/CD, 16
 TCP/IP, 18
próbkowanie, 26
przepustowość pasma, 281
przepusty kablowe, 172
przesłuch, 154
przetwornik
 A/C, 34
 C/A, 34
przewodowe media transmisyjne, 25
przewody
 BNC, 37
przewody UTP, 38, 40
PS ELFEXT, 154, 155
PS NEXT, 44, 45, 154, 155
punt abonencki, 69, 70, 71, 285
punt centralny sieci, 66, 68
punt konsolidacyjny, 285
punt rozdzielczy, 65, 285
budynkowy, 285
międzybudynkowy, 285
piętrowy, 285
rama montażowa 42U, 86
rdzeń światłowodu, 285
reakcja na awarie, 205
redundancja, 285
 okablowania kampusowego, 187, 193
 okablowania pionowego, 187
 traktów, 187, 188
 włókien, 187
redundantne obwody, 217
reflektometr, 156, 285
Return Loss, 44, 45, 285
rezystancja, 44
RJ-11, 78
RJ-12, 79
RJ-45, 20, 78
rodzaj powłoki, 44
router, 15
rozpraszanie wsteczne, 285
S
S/FTP, 40
SAN, 196, 198, 199, 200, 201, 202, 203, 285
SC, 57, 58, 59
SC MM Duplex, 58
sekwencja, 285
sesja komunikacyjna, 16, 18
SF/UTP, 40, 42
S-FTP, 40
sieć, 14
 Ethernet, 16
 Internet, 14
 intranet, 14
 LAN, 14, 143
 MAN, 14
 WAN, 14
sieć elektryczna, 117
simplex, 52, 285
skręka UTP, 19
skutki awarii, 207
SM, 50
SOS, *Patrz System Okablowania Strukturalnego*
SP-2840, 183
sposoby łączenia włókien, 54
sprzęt pasywny, 98
S-STP, 40
ST, 58, 59
stałoprądowa odporność pętli, 153
standard
 1000Base, 39
 1000Base-T, 39
 100Base-TX, 39
 10Base-T, 39
 PPP, 39
STP, 40
straty odbiciowe, 45, 153
suma logiczna, 32
switch, 15
sygnał, 25
 analogowy, 25, 26, 29, 285
cyfrowy, 25, 26, 27, 28, 32, 285
dyskretny, *Patrz sygnał cyfrowy* odbity (echo), 45
sinusoidalny, *Patrz sygnał analogowy*
świetlny, 46
tłumienie, 28
znieszkodlenie, 28
symbole bramek logicznych, 35
system
 binarny, 29, 285
dwójkowy, 29
informacyjno-telekomunikacyjny, 13

R
rama montażowa 42U, 86
rdzeń światłowodu, 285
reakcja na awarie, 205
redundancja, 285
 okablowania kampusowego, 187, 193
 okablowania pionowego, 187
 traktów, 187, 188
 włókien, 187
redundantne obwody, 217
reflektometr, 156, 285
Return Loss, 44, 45, 285
rezystancja, 44
RJ-11, 78
RJ-12, 79
RJ-45, 20, 78
rodzaj powłoki, 44
router, 15
rozpraszanie wsteczne, 285
system
- okablowania strukturalnego, 16, 18, 20, 117, 151, 160, 286
- okablowania, 15
- oznaczników kablowych, 74
- telekomunikacyjny, 15

szafa
- elementy chłodzące, 92
- elementy porządkujące przewody, 94
- uziemienie, 97
- dystrybucyjna, 83

Ś
średnica przewodnika, 44
środek gaśniczy, 239
światło, 46
światłowód
- budowa, 49
- bufor, 49
- DUPLEX, 52
- falowód, 49
- gradientowy, 286
- indeks skoku, 47
- jednomodowy, 50, 286
- kabel, 49
- kable w luźnej tubie, 51
- kąt krytyczny, 47
- klasyfikacja, 50
- MM, 51
- nadajnik, 47
- odbiornik, 47
- okna optyczne, 48
- ośłonka na spaw, 54
- płaszczyzny, 49
- rdzeń, 49
- SIMPLEX, 52
- SM, 50
- sposoby łączenia włókien, 54
- wielomodowy, 50, 51, 286
- włókna, 46, 49, 50
- zasada działania, 47
- zestaw pigtaili, 54
- zestaw przejściowy, 53
- zjawisko odbicia, 47
- źródło sygnału, 48

T
TCP/IP, 18
technologie informacyjne, 13
terminowanie, 286
tester kabli, 180
tester SLT3, 175, 176

TIA/EIA 568A, 21
TIA/EIA-568-B.1, 184
TIA/EIA-568-B.2, 184
TIA/EIA-568-B.3, 184
tłumienie, 286
- złącza, 286
- tłumienie sygnału, 28
topologia
- drzewista, 21, 23
- fizyczna, 21, 286
- gwiazdy, 21, 22, 23, 286
- hierarchicznej gwiazdy, 21, 23, Patrz też
topologia drzewiasta
- magistrali, 21, 22, 286
- pierścienia, 21, 286
- systemu, 21
tor transmisyjny, Patrz linia transmisyjna
- transmisja szerokopasmowa, 286
- trójstopniowa hierarchia systemu okablowania
- strukturalnego, 191
- TSB 36, 183
- TSB 40, 183
- TSB 67, 183
- TSB 72, 183
- TSB 75, 114
twierdzenie Kotielnikowa-Shannona, 26
tyki
- sygnałów, 25
topologii fizycznych, 21

U
U/FTP, 42
U/UTP, 40, 42
układ
- cyfrowy, 33
- logiczny, 34, 286
- równoważający, 286
układanie kabli w gruncie, 164
uniwersalna kaseta na złącza, 55
UPS, 214, 217
urządzenia aktywne sieci, 15
urządzenia UPS, 214, 217
USOC, 77
- UTP, 19, 38, 40, 162
- ACR, 45
częstotliwość kabla, 45
- ELFEXT, 45
- FEXT, 45
- maksymalne tłumienie, 45
- NEXT, 45
- PS NEXT, 45
- Return Loss, 45
- uziemienie przewodów, 45
W

Wala Krzysztof, 237, 246
WAN, 14, 286
warstwa fizyczna, 17, 18
warstwa sprzętowa, *Patrz* warstwa fizyczna
wartości logiczne, 32
WE4W (RJ-11), 78
WE6R (MMJ), 79
WE6W (RJ-12), 79
WE8W (RJ-45), 78
węzeł dostępu do Internetu, 68
węzeł klastra, 286
WLAN, 286
włókna światłowodowe, 46, 50
klasyfikacja, 52

Z

zabezpieczenia sieci elektrycznej, 217
zaciskarka, 178, 179
zagrożenia danych, 125
zagrożenia fizyczne, 125
zakłócenia, 27
zalecenia instalacyjne, 160
zarządzanie incydentem
algorytm, 208
zasilanie awaryjne, 120
zaślepka ST, 55
zatrzask modułu RJ45, 83
zestaw pigtaili, 54
zewnętrzna średnica kabla, 44
zjawisko
kolizji, 16
odbicia, 47
złącze
FC, 59
LC, 59
MTRJ, 58
optyczne, 57
SC, 57, 58, 59
SC MM Duplex, 58
ST, 58
ST, 59
światłowodowe, 57
złącza mechaniczne Ultrasplice, 55
zniekształcenia, 27
zniekształcenia sygnału, 28

Ź

źródło
sygnału, 15
światła, 286
Zagadnienie okablowania, czyli de facto stworzenia całej struktury sieciowej w przestrzeni o określonym, często skomplikowanym układzie, nie jest tak proste, jak mogłoby się z poziomu wydawać. Samo ułożenie kabli poprzedzone musi być za każdym razem kompleksową analizą wszystkich elementów powstającego systemu, od aspektów ściśle technicznych (gdzie umieścić szafy, ułożyć serwerownię, jakie instalacje towarzyszące wdrożyć?), aż po sposoby i miejsca wykorzystywania sieci przez użytkowników. To zadanie wymaga wiedzy oraz świadomości celów, a także dużej wyobraźni, nie tylko przestrzennej. Indywidualne dostosowanie powstającej infrastruktury do specyfiki lokalizacji docelowej i potrzeb użytkowników zawsze zależy od projektanta, a niezbędną wiedzę pozwalającą na stworzenie sprawnie działającej sieci teleinformatycznej znajdziesz właśnie w tej książce!

„Okablowanie strukturalne sieci. Teoria i praktyka. Wydanie III” to podręcznik, dzięki któremu kwestia zaprojektowania i wykonania systemu okablowania strukturalnego przestanie wydawać Ci się nie do pokonania. Dowiesz się, co należy wziąć pod uwagę na pierwszym etapie projektowania sieci, jakie materiały i urządzenia musisz zgromadzić oraz jak je ze sobą połączyć, a także jakie środowiskowe pracy wybrać dla centrum danych. Zrozumiesz, po co Ci szczegółowa dokumentacja projektowa i na czym polega odbiór projektu. Poznasz normy obowiązujące przy projektowaniu sieci i sprawdzone sposoby zabezpieczania infrastruktury przed awarią oraz neutralizacji ewentualnych jej skutków. Krótko mówiąc, książka ta to znakomite przygotowanie do pracy nad jednym z najważniejszych systemów działających we współczesnych firmach.

- Charakterystyka i cele tworzenia systemu okablowania
- Przewodowe media transmisyjne
- Elementy składowe okablowania strukturalnego
- Środowisko pracy dla centrum danych (DATA CENTER)
- Dokumentacja projektowa i odbiór systemu okablowania
- Porady techniczno-instalacyjne
- Okablowanie strukturalne a normy
- Redundancja okablowania pionowego
- Okablowanie strukturalne a backup danych
- Reakcja na awarie i projekt sieci
- Okablowanie strukturalne w pytaniach i odpowiedziach

Zbuduj system okablowania strukturalnego skrojony na miarę!