MATLAB
I PODSTAWY TELEKOMUNIKACJI
Autorzy:
Adam Dusior (rozdziały: 6, 10, 19), Grzegorz Dzwiki (rozdziały: 9, 17, 21, 22), Jacek
Izydorczyk (rozdziały: 7, 8, 16, 25). Piotr Klósowski (rozdziały: 15), Marcin Kucharczyk
(rozdziały: 3, 4, 18), Wojciech Sulek (rozdziały: 23, 24). Marek Szepieszewski (rozdziały: 2),
Wojciech Wieślawek (rozdziały: 11, 12, 13), Piotr Zawadzki (rozdziały: 1, 14, 20), Piotr
Zarychta (rozdziały: 5)

Opiniodawcy:
prof. dr hab. inż. Tomasz P. Zieliński (Akademia Górniczo-Hutnicza w Krakowie)
dr hab. inż. Jacek Piskorowski prof. nadzw. ZUT (Zachodniopomorski Uniwersytet
Technologiczny w Szczecinie)

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu
niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii
metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym,
magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi
bądź towarowymi ich właścicielami.

Autor oraz Wydawnictwo HELION dołożyli wszelkich starań, by zawarte w tej książce
informacje były kompletne i rzetelne. Nie biorąc jednak żadnej odpowiedzialności ani za ich
wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich
Autor oraz Wydawnictwo HELION nie ponoszą również żadnej odpowiedzialności za ewentualne
szkody wynikłe z wykorzystania informacji zawartych w książce.

The MathWorks, Inc. MATLAB and Simulink są zastrzeżonymi znakami towarowymi
The MathWorks, Inc.

Redaktor prowadzący: Małgorzata Kulik

Projekt okładki: Studio Gravite / Olsztyn
Oberek, Pokoński, Pądziejowski, Zaprucki

Grafika na okładce została wykorzystana za zgodą Shutterstock.com

Wydawnictwo HELION
ul. Kościuszk 1c, 44-100 GLIWICE
tel. 32 231 22 19, 32 230 98 63
e-mail: helion@helion.pl
WWW: http://helion.pl (księgarnia internetowa, katalog książek)

Drogi Czytelniku!
Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres
http://helion.pl/user/opinie/cwmap
Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

ISBN: 978-83-283-2701-6

Copyright © Helion 2017

Printed in Poland.
Spis treści

Część 1. Przetwarzanie sygnałów

1. Wprowadzenie do MATLAB-a. Generacja sygnałów
 1.1. Interfejs programu
 1.2. Zmienne i funkcje
 1.3. Operacje na macierzach
 1.4. Wykresy
 1.5. Generacja funkcji
 1.6. Tworzenie własnych skryptów i funkcji
 1.7. Kontrola wykonania
 1.8. Zadania do wykonania przed ćwiczeniem
 1.9. Program ćwiczenia

2. Dyskretna transformacja Fouriera i spłot kołowy
 2.1. Wprowadzenie
 2.1.1. Przedstawianie widma DFT
 2.1.2. Okresowość w dziedzinie czasu
 2.1.3. Związek między DFT i DTFT
 2.1.4. Podstawowe własności DFT
 2.1.5. Widmo sygnału o skończonym czasie trwania
 2.1.6. Przeciek widmowy
 2.1.7. Okienkowanie sygnału czasowego
 2.1.8. Rozdzielczość częstotliwościowa widma
 2.1.9. Obliczanie spłotu liniowego poprzez DFT
 2.1.10. Spłot blokowy
 2.1.11. Algorytm FFT
 2.2. Zadania do wykonania przed ćwiczeniem
 2.3. Program ćwiczenia

3. Filtry cyfrowe FIR
 3.1. Wprowadzenie
 3.2. Projektowanie filtrów FIR
 3.2.1. Metoda okien czasowych
 3.2.2. Próbkowanie w dziedzinie częstotliwości
 3.2.3. Optymalny projekt filtra FIR
 3.3. Zadania do wykonania przed ćwiczeniem
 3.4. Program ćwiczenia
4. Filtry cyfrowe IIR 59
 4.1. Wprowadzenie ... 59
 4.2. Projektowanie filtrów IIR 60
 4.2.1. Prototyp analogowy 60
 4.2.2. Transformacja wzorca analogowego na filtr cyfrowy 63
 4.3. Transformacja częstotliwościowa 66
 4.4. Struktury filtrów IIR 67
 4.5. Porównanie filtrów FIR i IIR 67
 4.6. Zadania do wykonania przed ćwiczeniem 70
 4.7. Program ćwiczenia 71

5. Sygnalizacja DTMF 77
 5.1. Wprowadzenie ... 77
 5.2. Sygnalizacja DTMF ... 77
 5.3. Algorytmy generowania sygnału DTMF 79
 5.4. Algorytmy dekodowania sygnału DTMF 80
 5.4.1. Algorytmy obliczania DFT 80
 5.4.2. Algorytm Goertzel 81
 5.4.3. Algorytm dekodowania sygnałów DTMF 83
 5.5. Zadania do wykonania przed ćwiczeniem 85
 5.6. Program ćwiczenia 85

6. Przesuwanie widma sygnału 87
 6.1. Wprowadzenie ... 87
 6.1.1. Sygnały analityczne 88
 6.1.2. Projektowanie filtrów Hilberta 90
 6.1.3. Zastosowanie filtrów Hilberta do przesuwania widma 90
 6.1.4. Przesuwanie widma sygnału i sygnały analityczne 92
 6.2. Zadania do wykonania przed ćwiczeniem 94
 6.3. Program ćwiczenia 94

7. Przetwarzanie $\Sigma\Delta$ 97
 7.1. Wprowadzenie ... 97
 7.1.1. Analogowo-cyfrowy przetwornik $\Sigma\Delta$ 97
 7.1.2. Cyfrowo-analogowy przetwornik $\Sigma\Delta$ 101
 7.1.3. Zalety i wady 101
 7.2. Zadania do wykonania przed ćwiczeniem 103
 7.3. Program ćwiczenia 105

8. Pasmowo-przepustowy przetwornik $\Sigma\Delta$ 111
 8.1. Wprowadzenie ... 111
 8.1.1. Przetwornik pasmowo-przepustowy 112
 8.1.2. Struktura filtru 113
 8.2. Zadania do wykonania przed ćwiczeniem 115
 8.3. Program ćwiczenia 116
Spis treści

9. **Eliminacja echa i filtry adaptacyjne** 119
 9.1. Wprowadzenie ... 119
 9.1.1. Model otoczenia .. 120
 9.1.2. Równanie normalne filtracji Wienera 121
 9.1.3. Algorytm gradientowy 122
 9.1.4. Algorytm LMS ... 124
 9.1.5. Algorytm RLS ... 126
 9.1.6. Środowisko niestacjonarne 128
 9.2. Zadania do wykonania przed ćwiczeniem 129
 9.3. Program ćwiczenia ... 129

10. **Liniowa predykcja sygnału mowy — wokodery** 133
 10.1. Wprowadzenie ... 133
 10.1.1. Wytwarzanie mowy przez człowieka 134
 10.1.2. Model toru głosowego człowieka 135
 10.1.3. Analiza cepstralna 142
 10.1.4. Synteza sygnału mowy w oparciu o parametry LPC 143
 10.2. Zadania do wykonania przed ćwiczeniem 145
 10.3. Program ćwiczenia .. 145

Część 2. **Przesyłanie sygnałów** 147

11. **Modulacja AM-DSB** 149
 11.1. Wprowadzenie ... 149
 11.2. Modulacja AM-DSB-WC 149
 11.3. Demodulacja sygnału AM-DSB-WC 153
 11.3.1. Detektor obwiedni 153
 11.3.2. Demodulator koherentny 155
 11.4. Moc sygnału AM ... 156
 11.5. Analiza szumowa modulacji AM-DSB-WC 156
 11.6. Modulacja AM-DSB-SC 157
 11.7. Zadania do wykonania przed ćwiczeniem 158
 11.8. Program ćwiczenia 158

12. **Modulacja AM-SSB** 161
 12.1. Wprowadzenie ... 161
 12.2. Modulacja AM-SSB ... 161
 12.2.1. Czasowa postać sygnału SSB-SC 161
 12.2.2. Czasowa postać sygnału SSB-WC 162
 12.2.3. Widmo sygnału SSB 163
 12.2.4. Wytwarzanie sygnału jednowstęgowego 163
 12.3. Demodulacja sygnału SSB-SC 166
 12.4. Moc sygnału SSB ... 168
 12.5. Analiza szumowa modulacji SSB 168
 12.6. Zadania do wykonania przed ćwiczeniem 169
 12.7. Program ćwiczenia 169
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Wprowadzenie</td>
<td>171</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Wąskopasmowa modulacja FM</td>
<td>172</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Szerokopasmowa modulacja FM</td>
<td>174</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Generacja sygnałów FM</td>
<td>176</td>
</tr>
<tr>
<td>13.3</td>
<td>Demodulacja FM</td>
<td>177</td>
</tr>
<tr>
<td>13.4</td>
<td>Moc sygnału FM</td>
<td>178</td>
</tr>
<tr>
<td>13.5</td>
<td>Analiza szumowa modulacji FM</td>
<td>178</td>
</tr>
<tr>
<td>13.6</td>
<td>Zadania do wykonania przed ćwiczeniem</td>
<td>179</td>
</tr>
<tr>
<td>13.7</td>
<td>Program ćwiczenia</td>
<td>179</td>
</tr>
<tr>
<td>14.1</td>
<td>Szumowa charakterystyka modulacji FM</td>
<td>181</td>
</tr>
<tr>
<td>14.2</td>
<td>Szumy w obecności preemfazy i deemfazy</td>
<td>185</td>
</tr>
<tr>
<td>14.3</td>
<td>Zadania do wykonania przed ćwiczeniem</td>
<td>187</td>
</tr>
<tr>
<td>14.4</td>
<td>Program ćwiczenia</td>
<td>187</td>
</tr>
<tr>
<td>15.1</td>
<td>Wprowadzenie</td>
<td>191</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Budowa systemu telekomunikacyjnego</td>
<td>191</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Ciągły kanał transmisyjny</td>
<td>193</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Dyskretny kanał transmisyjny</td>
<td>200</td>
</tr>
<tr>
<td>15.2</td>
<td>Zadania do wykonania przed ćwiczeniem</td>
<td>202</td>
</tr>
<tr>
<td>15.3</td>
<td>Program ćwiczenia</td>
<td>202</td>
</tr>
<tr>
<td>16.1</td>
<td>Kluczowanie częstotliwości z ciągłą fazą</td>
<td>205</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Modulacja MSK</td>
<td>206</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Modulator MSK</td>
<td>208</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Demodulator MSK</td>
<td>209</td>
</tr>
<tr>
<td>16.1.5</td>
<td>Modulacja GMSK</td>
<td>215</td>
</tr>
<tr>
<td>16.1.6</td>
<td>Kilka słów o estymacji stopy błędów</td>
<td>215</td>
</tr>
<tr>
<td>16.2</td>
<td>Zadania do wykonania przed ćwiczeniem</td>
<td>217</td>
</tr>
<tr>
<td>16.3</td>
<td>Program ćwiczenia</td>
<td>217</td>
</tr>
<tr>
<td>17.1</td>
<td>Cyfrowy nadajnik QAM</td>
<td>222</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Odbiornik QAM</td>
<td>230</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Synchronizacja</td>
<td>232</td>
</tr>
<tr>
<td>17.1.4</td>
<td>Efektywność widmowa modulacji</td>
<td>233</td>
</tr>
<tr>
<td>17.2</td>
<td>Zadania do wykonania przed ćwiczeniem</td>
<td>235</td>
</tr>
<tr>
<td>17.3</td>
<td>Program ćwiczenia</td>
<td>235</td>
</tr>
</tbody>
</table>
18. Modulacja OFDM — sygnał zmodulowany i prefiks cykliczny 239

18.1. Wprowadzenie .. 239
18.2. Modulacja i demodulacja OFDM 239
 18.2.1. Modulacja .. 240
 18.2.2. Symbol OFDM .. 240
 18.2.3. Demodulacja ... 243
 18.2.4. Parametry sygnału ... 243
18.3. Zniekształcenia sygnału ... 243
 18.3.1. Interferencje międzykanalowe i międzysymbolowe 243
 18.3.2. Szum i inne zakłócenia .. 244
18.4. Zadania do wykonania przed ćwiczeniem 245
18.5. Program ćwiczenia .. 245

19. Modulacja z widmem rozproszonym 247

19.1. Wprowadzenie .. 247
 19.1.1. Podstawy teoretyczne ... 248
 19.1.2. Systemy z kluczowaniem bezpośrednim DS 248
 19.1.3. Kody pseudolosowe ... 253
 19.1.4. Synchronizacja .. 258
19.2. Zadania do wykonania przed ćwiczeniem 260
19.3. Program ćwiczenia .. 261

20. Synchronizacja nadajnika i odbiornika 263

20.1. Analogowa pętla fazowa ... 263
 20.1.1. Liniowy model pętli fazowej 265
 20.1.2. Pętla fazowa jako demodulator FM 265
 20.1.3. Przykładowe rozwiązania układów PLL 266
20.2. Cyfrowa pętla PLL .. 267
20.3. Zadania do wykonania przed ćwiczeniem 269
20.4. Program ćwiczenia .. 269

21. Korekcja zniekształceń liniowych kanału telekomunikacyjnego 271

21.1. Wprowadzenie .. 271
 21.1.1. Korekcja liniowa ... 272
 21.1.2. Adaptacyjna korekcja liniowa 275
 21.1.3. Adaptacyjna korekcja nieliniowa 277
 21.1.4. Korekcja kanału — modulacje dwuwymiarowe 278
21.2. Zadania do wykonania przed ćwiczeniem 279
21.3. Program ćwiczenia .. 279

22. Ślepa korekcja kanału telekomunikacyjnego 285

22.1. Wprowadzenie .. 285
 22.1.1. Ogólna charakterystyka algorytmów ślepych 286
 22.1.2. Klasyfikacja algorytmów ślepych 288
22.2. Zadania do wykonania przed ćwiczeniem 292
22.3. Program ćwiczenia .. 293
23. Kody blokowe 297
 23.1. Wprowadzenie ... 297
 23.2. Macierz generująca i kodowanie 298
 23.3. Macierz kontroli parzystości i dekodowanie 298
 23.4. Odległość minimalna kodu 299
 23.5. Kody Hamminga .. 300
 23.6. Kody BCH ... 301
 23.7. Kodowanie blokowe w MATLAB-ie 301
 23.8. Zadania do wykonania przed ćwiczeniem 302
 23.9. Program ćwiczenia 302

24. Kody splotowe 305
 24.1. Wprowadzenie .. 305
 24.2. Kodery splotowe 305
 24.3. Dekoder Viterbiego 307
 24.4. Turbokody ... 309
 24.5. Kodowanie splotowe w MATLAB-ie 310
 24.6. Zadania do wykonania przed ćwiczeniem 312
 24.7. Program ćwiczenia 313

25. Kanały MIMO 315
 25.1. Wprowadzenie .. 315
 25.2. Pojemność kanału MIMO 317
 25.2.1. Stan kanału: nieznany 319
 25.2.2. Stan kanału: znany 320
 25.2.3. ε-przepustowość kanału MIMO 321
 25.3. Zróżnicowanie przestrzenne kanału 324
 25.3.1. Zróżnicowanie kanału po stronie odbiornika — kanał SIMO 324
 25.3.2. Zróżnicowanie kanału po stronie nadajnika — kanał MISO 329
 25.4. Zwielokrotnienie przestrzenne kanału 336
 25.4.1. Metoda największej wiarygodności 336
 25.4.2. Metody filtracji liniowej 339
 25.4.3. Metody nieliniowe 343
 25.5. Zadania do wykonania przed ćwiczeniem 345
 25.6. Program ćwiczenia: kanały MIMO 347
 25.7. Rozkład macierzy wg wartości osobliwych 352
 25.7.1. Twierdzenie o rozkładzie macierzy wg wartości osobliwych 352
 25.7.2. Związek z rozkładem wg wartości własnych 353
 25.7.3. Związek z normą Frobeniusa 354
 25.7.4. Algorytm rozkładu SVD 355
 25.7.5. Metoda Kryłowa 355
 25.8. Zadania do wykonania przed ćwiczeniem 358
 25.9. Program ćwiczenia: rozkład macierzy 358

Odpowiedzi 361
Rozdział 21.

Korekcja zniekształceń liniowych
kanału telekomunikacyjnego

Grzegorz Dziwoki

21.1. Wprowadzenie

Poza różnego typu zakłóceniami szumowymi kanały transmisyjne wprowadzają do
sygnału zniekształcenia liniowe. Zniekształcenia te wywierają negatywny wpływ szczególnie
na transmisję o charakterze cyfrowym. Zniekształcenia liniowe wynikają z braku liniowości
charakterystyki fazowej kanału telekomunikacyjnego. Idealny kanał transmisyjny, w wyko-
rzystywanym przez system paśmie częstotliwości, ma płaską charakterystykę amplitudową
oraz liniową charakterystykę fazową. Odstępstwa od takiego przebiegu charakterystyki
amplitudowo-fazowej prowadzą po stronie czasowej do wydłużenia odpowiedzi impulsowej
kanału. W tym przypadku mówi się, że kanał wykazuje własności dyspersyjne. Jeżeli
czas odpowiedzi impulsowej jest dłuższy od czasu pomiędzy dwoma kolejnymi transmito-
wanymi symbolami (tzw. odstępu sygnaлизacji), to występuje zjawisko interferencji
międzysymbolowych. Oznacza to, że obecnie odbierany symbol informacyjny jest liniową
kombinacją symbolu poprawnego oraz symboli transmitowanych wcześniej (wpływ post-
kursorów odpowiedzi impulsowej) i później (wpływ prekursorów odpowiedzi impulsowej)
[4]. Udział poszczególnych symboli jest zależny od wartości współczynników odpowiedzi
impulsowej kanału. Zjawisko interferencji międzysymbolowych w dyskretnej dziedzinie
czasu przedstawia następujące równanie:

\[
x[n] = \underbrace{h_0 s[n]}_{\text{pożądany symbol}} + \sum_{k<0}^{k>0} h_k s[n-k] + \sum_{k>0}^{k=0} h_k s[n-k] .
\]

Nieprzyczynowość odpowiedzi impulsowej \(h \), tzn. występowanie współczynników dla \(k < 0 \),
spowodowana jest przyjętym sposobem indeksowania, dla którego opóźnienie sygnału na
wyjęciu kanału wynosi zero.
Efektywne wykorzystanie dostępnego pasma częstotliwości kanału wymaga nadawania symboli z prędkością, dla której wobec dyspersyjnych własności kanału interferencja międzysymbolowa jest nieunikniona. Konstruując system transmisji, tak dobiera się jego parametry, aby wpływ interferencji został wyeliminowany lub zminimalizowany do tego stopnia, by zagwarantować poprawny odbiór informacji. W tym celu m.in. dopasowuje się kształt nadawanego symbolu do szerokości dostępnego w systemie pasma częstotliwości (patrz ewiczenie „Modulacja QAM”). Jednakże zabieg ten jest niewystarczający, gdyż nie można z góry przewidzieć charakteru zniekształceń liniowych wprowadzanych przez kanał. Dlatego stosowane są dodatkowe układy, zwane korektorami, które dzięki swym własnościom adaptacyjnym dostosowują się do nieznanych i ustawicznie zmieniających się warunków transmisyjnych.

21.1.1. Korekcja liniowa

Rysunek 21.1. Uproszczony model systemu telekomunikacyjnego

Korektor $W(z)$ implementowany jest jako dodatkowy filtr cyfrowy odbiornika. Ponieważ estymata sygnału popravnego na wyjściu korektora jest liniową kombinacją sygnałów wejściowych $x[n]$ (i wyjściowych $y[n]$, jeżeli korektor jest filtrem IIR), przeprowadzoną w ten sposób korekcję nazywamy korekcją liniową, a korektor — korektorem liniowym.

21.1.1. Warunek wymuszania zera — ZF (ang. zero forcing)

Korekcję liniową, gwarantującą zerowy poziom interferencji międzysymbolowych, uzyskuje się w momencie spełnienia przez system warunku:

$$C(z) = H(z)W(z) = z^{-m},$$ \hspace{1cm} (21.2)

gdzie m jest wartością opóźnienia wprowadzanego przez układ kanał-korektor. Wyrażenie $C(z)$ jest transmitancją kaskadowego połączenia kanału i korektora. Dokonując
przekształcenia zależności (21.2) i pomijając opóźnienie, otrzymujemy prostą zależność na transmitancję korektora, przy założeniu, że znane są parametry kanału transmisyjnego [4]:

\[W_{ZF}(z) = \frac{1}{H(z)}. \]

Wzór (21.3) nazywany jest warunkiem wymuszania zera, ponieważ po jego spełnieniu w odpowiedzi impulsowej układu \(C(z) \) występuje tylko jeden niezerowy współczynnik o wartości jednostkowej.

Korektor dla kanału FIR jest układem o nieskończoną odpowiedzi impulsowej. W zależności od rozmieszczenia zer transmitancji kanału możemy wyróżnić następujące sytuacje [4]:

a) dla kanału minimalnofazowego korektor jest układem przyczynowym i stabilnym;
b) dla kanału nieminimalnofazowego bez zer na okręgu jednostkowym korektor jest układem nieprzyczynowym i stabilnym;
c) dla kanału o zera na okręgu jednostkowym korektor jest układem niestabilnym.

Dwa ostatnie przypadki wykluczają możliwość całkowitej eliminacji interferencji międzysymbolowych. Dla a) jest to możliwe, ale tylko wtedy, gdy korektor jest zrealizowany jako filtr IIR. Jest to jednak rozwiązanie rzadko stosowane. Powszechnie spotykane układy korekcyjne są filtrami FIR. W tej sytuacji korektor FIR odtwarza jedynie najbardziej istotną część odpowiedzi impulsowej korektora IIR. Cena za to jest pozostawienie resztowego poziomu interferencji w systemie. Stwarza to szansę przynajmniej częściowej korekcji kanału typu b). Nieprzyczynową odpowiedź idealnego korektora opóźnia się tak, aby najbardziej istotna jej część pojawiła się dla \(t > 0 \). Ta właśnie część może być odtworzona przez korektor FIR. Rys. 21.2 przedstawia przykładową odpowiedź impulsową kanału, rozkład zer i biegunów jego transmitancji na płaszczyźnie \(\mathbb{Z} \) oraz te same wielkości dla korektora wyznaczonego na podstawie warunku (21.3).

Przy wyznaczaniu parametrów korektora z warunku ZF nie jest brany pod uwagę szum występujący w kanale. Jego charakterystyka widmowa jest dodatkowo kształtowana przez korektor. Jeżeli założymy, że szum kanałowy jest gaussowskim szumem białym, to współczynnik wzmocnienia szumu przez korektor można wyznaczyć z zależności [4]:

\[WWS = \sum_l w_l^2, \]

gdzie \(w_l \) to współczynniki odpowiedzi impulsowej korektora. Szczególnie niekorzystne właściwości ma kanał o zerach położonych w pobliżu koła jednostkowego. Kanały takie określone są w telekomunikacji mianem kanałów z zanikami lub kanałów trudnych. Odpowiadający im korektor znajduje się na granicy stabilności; cechuje się on dużym wzmocnieniem szumów występujących w obrębie pasma częstotliwości silnie tłumionego przez kanał.

21.1.1.2. Warunek minimalizacji błędu średniokwadratowego — MMSE (ang. *minimum mean square error*)

Odmienne podejście do problemu eliminacji zniekształceń liniowych wprowadzanych przez kanał polega na jednoczesnej minimalizacji błędu występujących na wyjściu korektora interferencji międzysymbolowych i pozostałych zakłóceń szumowych. Wykorzystuje się do tego popularne kryterium minimalizacji błędu średniokwadratowego. Jeżeli założymy,
Rysunek 21.2. Charakterystyka kanału i korektora utworzonego przy wykorzystaniu warunku ZF. A), C) — położenie zer i biegunów transmitancji; B), D) — odpowiedzi impulsowe.

że gęstość widmowa mocy sygnałów nadawanych $s[n]$, podobnie jak zakłócenia szumowe $z[n]$, ma charakter szumu białego, to równanie określające transmitancję korektora MMSE będzie miało postać [4]:

$$W_{MMSE}(z) = \frac{H^*(z^{*-1})}{H^*(z^{*-1})H(z) + P_z/P_s},$$

gdzie P_z jest mocą szumu, a P_s średnią mocą symboli nadawanych. W granicy dla $P_z \to 0$ warunek MMSE jest równoważny ZF.

Korektory wyznaczone w oparciu o kryterium (21.5) są na ogół nieprzyczynowymi układami o nieskończonej odpowiedzi impulsowej. Pozostawiają szczątkową interferencję międzysymbolową w systemie, a jej poziom jest tym wyższy, im mniejszy jest stosunek P_s/P_z. Realizacja ich jest możliwa przez ograniczenie czasu trwania odpowiedzi impulsowej korektora i implementację w postaci filtra FIR. Własności otrzymanych korektorów są podobne do własności korektorów uzyskanych na podstawie warunku ZF. Zdarza się również,
że udaje się znaleźć korektor dla kanału o zerach położonych na okręgu jednostkowym. Należy jednak zaznaczyć, że korekcja liniowa kanałów z „głębokimi” minimami, które cechują np. kanały radiowe, jest w wielu przypadkach nieefektywna, i to zarówno wtedy, kiedy stosuje się kryterium ZF, jak i wtedy, kiedy używa się MMSE.

Do oszacowania poziomu zniekształceń występujących w systemie, niezależnie od sposobu wyznaczenia charakterystyki korektora, można zastosować dwie miary ISI. Obie uwzględniają wpływ interferencji międzysymbolowych i zakłóceń szumowych. Pierwszą z nich jest popularny estymator błędu średniokwadratowego [1]:

$$\text{MSE} = 10 \log \left\{ \mathbb{E} \left[(y(n) - s(n))^2 \right] \right\}.$$ (21.6)

Jest to miara statystyczna, która wyznacza całkowity poziom zniekształceń na podstawie porównania wartości symboli odebranych i poprawnych. Druga miara określona jest za pomocą zależności [1]:

$$\text{ISI} = 10 \log \left[\frac{\sum c_i^2 - (\max c_i)^2}{(\max c_i)^2} \right],$$ (21.7)

gdzie c_i to współczynniki układu kanał-korektor. Powyższa miara określa tylko poziom interferencji międzysymbolowych pozostawionych w systemie. Aby dodatkowo uwzględnić także zakłócenia szumowe o mocy P_z, można ją przekształcić do postaci:

$$\text{ISIN} = 10 \log \left[\frac{\sum c_i^2 + P_z \sum w_l^2 - (\max c_i)^2}{(\max c_i)^2} \right],$$ (21.8)

gdzie w_l to współczynnik korektora.

21.1.2. Adaptacyjna korekcja liniowa

Przeprowadzone wcześniej rozważania dotyczące metod określania parametrów korektorów miały znaczenie czysto teoretyczne, ponieważ czynnikiem warunkującym dokonanie tych analiz była znajomość charakterystyki kanału transmisyjnego. W rzeczywistości charakterystyka kanału nie jest znana a priori i może zmieniać się w czasie. Dlatego filtry korekcyjne realizowane są jako układy adaptacyjne. Przykładowy schemat blokowy systemu z adaptacyjną korekcją liniową przedstawia rysunek 21.3.

W porównaniu z rysunkiem 21.1 w torze transmisyjnym systemu pojawia się dodatkowy element. Jest to bezpamięciowy układ decyzyjny (ang. slicer), którego zadaniem jest przyporządkowanie nieskończonego zbioru wartości na wyjściu korektora $y[n]$ do skończonego zbioru symboli danej konstelacji, zgodnie z regułą minimalnej odległości euklidesowej.

Dobór parametrów filtra adaptacyjnego FIR opiera się na minimalizacji (bądź maksymalizacji) odpowiednio przyjętej funkcji celu. Ze względu na nieskomplikowaną implementację powszechnie stosowany jest algorytm LMS lub jego odmiany (patrz rozdział „Eliminacja echa i filtry adaptacyjne” — strona 119). Uaktualnianie wartości współczynników filtru odbywa się dla każdej nowej próbki zgodnie z równaniem [2], [3]:

$$w[n + 1] = w[n] + 2\mu e[n]x[n].$$ (21.9)
Równanie (21.9) ma zastosowanie w przypadku systemu z modulacją jednowymiarową (PAM). Korekcja sygnałów dwuwymiarowych, np. QAM, zostanie przedstawiona w dalszej części ćwiczenia.

Maksymalna wartość kroku adaptacji μ_{max} szacowana jest z zależności:

$$\mu_{\text{max}} = \frac{1}{LP_x}, \quad (21.10)$$

gdzie P_x jest mocą sygnału na wejściu filtru adaptacyjnego, a L — rzędem filtru adaptacyjnego.

W czasie transmisji danych korektor przechodzi do trybu pracy z tzw. sterowaniem decyzyjnym — DD (ang. Decision-Directed). Układ korektora minimalizuje błąd pomiędzy...
odebranym sygnałem $y[n]$ a symbolem $d[n]$ należącym do konstelacji, który jest mu naj-
bliszszy w sensie miary euklidesowej. Wyboru właściwego symbolu odniesienia z konstelacji
dokonuje bezpamięciowy układ decyzyjny. Zbieżność procedury korekcyjnej w kierunku
minimum zniekształceń liniowych możliwa jest w przypadku takiego poziomu interferencji
międzysymbolowych, dla którego uzyskujemy otwarte oczko w diagramie przejść przyjętej
konstelacji transmitowanych symboli. Warunek ten dla M-wartościowej modulacji PAM
przyjmuje postać [1]:

$$
(M - 1) \sum_{i \neq v} \frac{|c[i]|}{|c[v]|} < 1,
$$

gdzie:

- $c[i]$ — współczynniki odpowiedzi impulsowej kanał – korektor;
- M — liczba symboli modulacji PAM.

W tym trybie pracy korektor nie wymaga przesyłania żadnych dodatkowych danych.
Poprawna praca korektora jest jednak możliwa tylko, wtedy gdy nastawy parametrów są
zbliżone do optymalnych. Każda gwałtowna zmiana własności kanału wymaga przejścia
z powrotem do trybu uczenia z wykorzystaniem sekwencji treningowej.

21.1.3. Adaptacyjna korekcja nieliniowa

Poważną wadą omawianej dotychczas Korekcji liniowej jest niska efektywność usuwania
interferencji międzysymbolowych wprowadzanych przez kanały z zanikami. Wady tej nie
ma nieliniowa korekcja adaptacyjna z decyzyjnym sprzężeniem zwrotnym — DFE (ang.
decision feedback equalization) [2]. Zapewnia ona korekcję nawet tych kanałów, których zera
transmitancji znajdują się na okręgu jednostkowym. Schemat blokowy systemu z niniejszą
procedurą korekcji przedstawia rysunek 21.4. Układ korektora zbudowany jest z dwóch
filtrów cyfrowych FIR. Pierwszy, $W(z)$, odpowiedzialny jest za usuwanie prekursorów
z odpowiedzi impulsowej układu kanał-korektor. Natomiast filtr sprzężenia zwrotnego
$V(z)$, wykorzystując wcześniej odebrane symbole do eliminowania ich wpływu na obec-
nie odbierany symbol, odpowiada za minimalizację postkursorów odpowiedzi impulsowej
kańal – korektor. Określenie „korekcja nieliniowa” pochodzi od zastosowania w pętli sprzę-
żenia zwrotnego korektora symboli danej konstelacji wygenerowanych w nieliniowym
układzie decyzyjnym odbiornika. Współczynniki filtrów korektora są uaktualniane zgodnie
z algorytmem LMS wg następujących zależności (dla modulacji jednowymiarowych):

\[
\begin{align*}
\mathbf{w}[n+1] &= \mathbf{w}[n] + 2\mu\mathbf{e}[n]\mathbf{x}[n], \\
\mathbf{v}[n+1] &= \mathbf{v}[n] + 2\mu\mathbf{e}[n]\mathbf{d}_{-0}[n],
\end{align*}
\]

gdzie $\mathbf{d}[n]$, zależnie od stosowanego trybu adaptacji, jest wektorem symboli ciągu treningo-
wego lub decyzji układu decyzyjnego. Wektor $\mathbf{d}_{-0}[n]$ zawiera wszystkie stany wewnętrzne
filtru $V(z)$, z wyjątkiem współczynnika zerowego $d_0[n]$. Jego wartość, równa jednemu
z możliwych symboli konstelacji, określona jest przez układ decyzyjny lub jest aktualnym
symbolem ciągu treningowego. Sygnał $d_0[n]$ stosowany jest w procedurze adaptacyjnej do
wyznaczenia błędu $e[n]$.
Rysunek 21.4. Schemat blokowy systemu z adaptacyjną korekcją nieliniową

21.1.4. Korekcja kanału — modulacje dwuwymiarowe

Dotychczasowa analiza korekcji kanału obejmowała przypadek systemów telekomunikacyjnych, które stosują modulacje jednowymiarowe (wielowartościowy PAM). Oznacza to, że symbole konstelacji tych modulacji należą do zbioru liczb rzeczywistych. Chociaż symbole informacyjne modulacji jednowymiarowych mogą być przesyłane w różnych zakresach częstotliwości, to komplementarność operacji przesuwania widma w nadajniku i odbiorniku pozwala (przy zachowaniu synchronizacji) na analizę zagadnień korekcji w paśmie podstawowym i w dziedzinie liczb rzeczywistych.

Z kolei przeprowadzenie podobnej analizy w obrębie pasma podstawowego dla systemów z modulacjami dwuwymiarowymi (np. QAM) wymaga zastosowania liczb zespolonych; dzieje się tak z uwagi na zespolony charakter konstelacji symboli oraz współczynników filtru adaptacyjnego. Wszystkie pozostałe sygnały i procedury korekcji obowiązujące dla modulacji dwuwymiarowych są zespolonymi odpowiednikami sygnałów i procedur modulacji jednowymiarowych [2], [4].

Szczególną uwagę należy zwrócić na odpowiednie przekształcenie wzorów adaptacji współczynników korektora dla algorytmu LMS. W dziedzinie liczb zespolonych przyjmują one następującą postać:

\[
\mathbf{w}[n+1] = \mathbf{w}[n] + 2\mu e^*[n]\mathbf{x}[n],
\]

przy czym wartość błędu \(e[n] \) obliczana jest ze wzoru:

\[
e[n] = s[n] - \mathbf{w}^T\mathbf{x}[n],
\]

gdzie \(s[n] \) jest symbolem ciągu treningowego lub estymatą symbolu poprawnego uzyskaną
21.2. Zadania do wykonania przed ćwiczeniem

z układu decyzyjnego. Tę samą procedurę przejścia do dziedziny liczb zespolonych trzeba wykonać w przypadku korekcji nieliniowej dla równania (21.12a).

Literatura

21.2. Zadania do wykonania przed ćwiczeniem

a) Wyznacz współczynniki odpowiedzi impulsowej h_k kanału transmisyjnego modelowanego układem FIR, który scharakteryzowany jest następującym rozkładem zer transmitancji:

1) $z_1 = 0,3 + j 0,3\sqrt{3}; \quad z_2 = 0,3 - j 0,3\sqrt{3}; \quad z_3 = 0,3; \quad z_4 = -0,5; \quad z_5 = -0,6; \quad h_0 = 0,773;$

2) $z_1 = 0,45 + j 0,45\sqrt{3}; \quad z_2 = 0,45 - j 0,45\sqrt{3}; \quad z_3 = 0,3; \quad z_4 = -0,5; \quad z_5 = -0,6; \quad h_0 = 0,614;$

3) $z_1 = 0,5 + j 0,5\sqrt{3}; \quad z_2 = 0,5 - j 0,5\sqrt{3}; \quad z_3 = 0,3; \quad z_4 = -0,5; \quad z_5 = -0,6; \quad h_0 = 0,557;$

4) $z_1 = 0,55 + j 0,55\sqrt{3}; \quad z_2 = 0,55 - j 0,55\sqrt{3}; \quad z_3 = 0,3; \quad z_4 = -0,5; \quad z_5 = -0,6; \quad h_0 = 0,503;$

5) $z_1 = 0,8 + j 0,8\sqrt{3}; \quad z_2 = 0,8 - j 0,8\sqrt{3}; \quad z_3 = 0,3; \quad z_4 = -0,5; \quad z_5 = -0,6; \quad h_0 = 0,298.$

b) Powtórz wiadomości o transformacji Z i liniowych układach dyskretnych.

c) Powtórz wiadomości o algorytmie LMS i jego własnościach.

Odpowiedzi znajdziesz na stronie 367.

21.3. Program ćwiczenia

Zadanie 21.1. Przygotowanie środowiska symulacji

Poniższe funkcje są odpowiednikami bloków i sygnałów przedstawionych na rysunku 21.3.
Rozdział 21. Korekcja zniekształceń liniowych kanału telekomunikacyjnego

a) Napisz funkcję, która generuje ciąg wzajemnie niezależnych symboli $s[n]$ modulacji 4-PAM. Każdy z generowanych symboli przyjmuje jedną spośród jednakowo prawdopodobnych wartości ze zbioru $[-1.5, -0.5, 0.5, 1.5]$.

b) Napisz funkcję, która dla danej mocy P_s symboli nadawanych generuje addytywny biały szum gaussowski $z[n]$ o mocy P_z, zapewniającej spełnienie założonego stosunku P_s/P_z dB.

c) Napisz funkcję implementującą zasadę działania układu decyzyjnego stosowanego w modulacji 4-PAM.

Zadanie 21.2. Korektor liniowy — warunek wymuszania zera

b) Wykorzystaj powyższą funkcję do obliczenia współczynników odpowiedzi impulsowej korektora. Rozpatrz kanały wymienione w przygotowaniu do ćwiczenia. Dostosuj liczbę współczynników L (rząd korektora), aby dla modulacji 4-PAM obliczony ze wzoru (21.11) warunek otwarcia okna był mniejszy od 0,3. Wykreśl odpowiedzi impulsowe otrzymanych korektorów.

c) W jaki sposób własności kanału wpływają na rząd i opóźnienie wprowadzane przez korektor? Czy dla wszystkich kanałów istnieje korektor liniowy spełniający warunek (21.11)? Określ współczynnik wzmocnienia szumu na wyjściu uzyskanych korektorów.

d) Wykreśl charakterystyki amplitudowe (w dB) i fazowe korektorów i odpowiadających im kanałów, również dla kanałów niegwarantujących spełnienia warunku otwarcia okna.

M-plik: korektor liniowy — warunek ZF.

function w=zf(h,N,M)
% funkcja wyznaczająca wartość współczynników korektora liniowego
% zgodnie z kryterium wymuszania zera (ang. zero-forcing)
% h - współczynniki odpowiedzi impulsowej kanału
% N - parametr odpowiadający za rząd części przyczynowej
% M - parametr odpowiadający za rząd części nieprzyczynowej,
% Jeżeli istnieje
% w - współczynniki odpowiedzi impulsowej korektora

[r,p,k]=residuez(1,h); % rozkład na ułamki proste
% transmitancji korektora
modul = abs(p); % wartości modułów biegunów
% korektora

impuls = zeros(1,N); % delta Kroneckera
impuls(1)=1; % część przyczynowa

impuls_n = zeros(1,M); % delta Kroneckera
impuls_n(1)=1; % część nieprzyczynowa

odp=0; % inicjalizacja
% część przyczynowa

odp_n=zeros(1,M); % inicjalizacja
% część nieprzyczynowa

for q=1:length(modul) % wyznaczanie odp i odp_n
 if modul(q)<1
 odp=odp+filter(r(q),[1 -p(q)],impuls);
 else
 odp_n=odp_n+filter([0 r(q)],[p(q)],impuls_n);
 end
end

kor=[];
for y=1:length(odp_n)-1; % odwracanie kolejności
 kor(y)=odp_n(length(odp_n)-y+1);
end

w=real([kor,odp]); % całkowita odpowiedź
% impulsowa korektora

Zadanie 21.3. Korektor liniowy — warunek minimalizacji błędu średniokwadratowego

a) Zmodyfikuj funkcję z zadania 21.2. aby umożliwiała wyznaczenie współczynników korektora liniowego na podstawie warunku MMSE (21.5).
c) Wykreśl charakterystyki amplitudowe (w dB) i fazowe korektorów. Uzyskane charakterystyki porównaj z wynikami otrzymanymi dla warunku wymuszania zera.

Zadanie 21.4. Prawdopodobieństwo błędu transmisji

a) Wykreśl charakterystykę prawdopodobieństwa błędu transmisji p_e w funkcji stosunku P_s/P_z dla idealnego kanału transmisyjnego. Przeprowadź symulacje dla ciągu 10 000 symboli i stosunku P_s/P_z w przedziale 1 – 22 dB z krokiem 1 dB. Wynik uśrednij na drodze kilku niezależnych symulacji. Charakterystykę przedstaw w skali logarytmicznej.
b) Sprawdź skuteczność eliminacji interferencji międzysymbolowych dla kanałów rozważanych wcześniej, wybierając spośród nich po jednym kanale łatwo- i trudnokorygo-
walnym. Dla każdego z analizowanych kanałów wykreśl logarytmiczną charakterystykę zależności prawdopodobieństwa błędu p_e w funkcji P_s/P_z dla korektorów ZF i MMSE. Wyniki odnieś do przypadku prawdopodobieństwa błędu w kanale idealnym. Wartość P_s/P_z przyjmij z zakresu 1 – 22 dB z krokiem 1 dB. Liczba generowanych symboli $s[n]$ wynosi $I = 10000$.

c) Porównaj uzyskane charakterystyki prawdopodobieństwa błędu p_e w funkcji P_s/P_z w zależności od typu rozpatrywanego kanału i warunku wyznaczenia parametrów korektora.

Zadanie 21.5. Liniowa korekcja adaptacyjna

a) Napisz funkcję implementującą korekcję z zastosowaniem ciągów treningowych. Do adaptacji współczynników korektora wykorzystaj algorytm LMS (patrz ćwiczenie „Eliminacja echa akustycznego. Filtry adaptacyjne” na stronie 119).

Parametry przekazywane funkcji to:
- L — rząd filtru (korektora) adaptacyjnego;
- μ — krok adaptacji;
- $x[n]$ — sygnał wejściowy korektora;
- $s[n]$ — sekwencja treningowa;
- Δ — opóźnienie sekwencji treningowej.

Funkcja powinna zwracać:
- w — tablicę współczynników filtru dla każdego kroku adaptacji;
- $y[n]$ — sygnał wyjściowy korektora;
- $d[n]$ — sygnał wyjściowy uzyskiwany w układzie decyzyjnym danej konstelacji.

b) Wykorzystując opracowane funkcje, napisz m-plik ilustrujący działanie liniowej korekcji adaptacyjnej dla modulacji 4-PAM. Przyjmij następujące warunki symulacji:

- krok adaptacji $\mu = 0,5\mu_{\text{max}}$;
- wartości Δ i L określone na podstawie wyników uzyskanych w zadaniach 21.2. i 21.3.;
- stosunek $P_s/P_z = 30$ dB;

c) Oceń, jak na skuteczność korekcji wpływają krok adaptacji μ, rząd filtru L i opóźnienie Δ.

M-plik: algorytm LMS.

```matlab
function [d,y,w]=lms(x,s,krok,L,delay)
% funkcja implementująca algorytm LMS
% parametry:
% w - tablica - współczynniki filtru LMS każdego kroku adaptacji
```
% y - wektor - wyjście filtra adaptacyjnego
% x - wektor - wejście filtra adaptacyjnego
% s - wektor - sygnał odniesienia (sekwencja treningowa)
% d - wektor - wyjście układu decyzyjnego
% krok - krok adaptacji
% L - rząd filtru adaptacyjnego

M=length(y); %inicjalizacja parametrów start
w=zeros(L,1);
d=zeros(M,1);
y=zeros(M,1);
e=zeros(M,1);
y1=zeros(L,1); %koniec

for i=(1+delay):M;
 y1=[x(i);y1(1:length(y1)-1)]; % stany wewnętrzne filtru
 y(i)=w(:,i-delay)'*y1;% wyjście filtru
 d(i)=decyzja(y(i)); % decyzja
 e(i)=s(i-delay)-y(i); % sygnał błędu
 w(:,i+1-delay)=w(:,i-delay)+2*krok*e(i)*y1; % aktualizacja
 % współczynników
end

Zadanie 21.6. Nieliniowa korekcja adaptacyjna — DFE

a) Zmodyfikuj funkcję algorytmu LMS z zadania 21.3., aby realizowała zasadę korekcji nieliniowej z decyzyjnym sprzężeniem zwrotnym DFE z zastosowaniem sekwencji treningowych. Dodatkowym parametrem wywołania funkcji jest rząd filtru sprzężenia zwrotnego — V.

b) Napisz m-plik realizujący korekcję DFE dla systemu z modulacją 4-PAM. Analizę przeprowadź dla wszystkich kanałów wymienionych w przygotowaniu do ćwiczenia. Przyjmij następujące warunki symulacji:

- krok adaptacji \(\mu = 0.25\mu_{max} \);
- rzędy filtrów \(W \) i \(V \) wynoszą \(L = 5 \);
- stosunek \(P_s/P_z = 30 \text{ dB} \);
- maksymalna liczba nadawanych symboli to 2000.

Dobierz odpowiednie opóźnienie \(\Delta \) wprowadzane przez filtr \(W \). Wykreśl sygnał błędu, określony jako różnica pomiędzy sygnałem poprawnym (ciąg treningowy) a odebranym, w funkcji numeru iteracji. Wykreśl uśrednione charakterystyki ISIN = \(f[n] \). Uwaga: należy przekształcić miarę zniekształceń liniowych opisaną wzorem (21.8), uwzględniając filtr sprzężenia zwrotnego.

c) Sprawdź własności korekcyjne dla innych wartości rzędów filtrów \(W \) i \(V \) oraz opóźnienia \(\Delta \). Porównaj własności korekcji liniowej i nieliniowej.

Zadanie 21.7. Korekcja sygnałów dwuwymiarowych

a) Funkcję odpowiadającą za generację symboli, szumu, a także funkcję układu decyzyjnego z zadania 21.1. przekształć na potrzeby modulacji 4-QAM.

b) Zmień wcześniej opracowane funkcje liniowej i nieliniowej korekcji LMS, aby obowiązywały dla symboli konstelacji 4-QAM.
c) Przeprowadź korekcję kanałów zawartych w przygotowaniu do ćwiczenia dla systemu z modulacją 4-QAM. Zastosuj takie same parametry symulacji jak w zadaniach 21.5. i 21.6. Wykreśl sygnał błędu, określony jako różnica pomiędzy sygnałem poprawnym a odebranym, w funkcji numeru iteracji. Wykreśl na płaszczyźnie liczb zespolonych symbole \(y[n] \) uzyskiwane na wyjściu filtra adaptacyjnego. Czy wykres jest zbliżony z oryginalną konstelacją symboli? Wyniki porównaj z konstelacją zakłókaną jedynie przez szum.

d) Przeprowadź podobną analizę dla konstelacji 16-QAM.
Skorowidz

3-decybelowa pulsacja graniczna, 60
adaptacyjna
korekcja liniowa, 275
korekcja nieliniowa, 277
algorytm ślepy
„stop & go”, 291
Benveniste’a-Goursata, 291
CMA, 289
RCA, 288
Sato, 288
Durbina, 138
Goertzel’a, 81
gradientowy, 122
LMS, 124, 125, 275, 285
Parksa-McClellana, 51
Remeza, 51
RLS, 126, 127
Viterbiego, 307
aliasing w dziedzinie czasu, 27
amplituda symbolu, 224
analiza cepstralna, 142, 143
antyformanty, 135
aparat głosowy, 134
argument symbolu, 224
autokorelacja ciągu, 254
błąd
średniokwadratowy, 121, 137, 140, 275
obcięcie, 26
predykcji, 136
zaokrąglenie i przepelnienia, 67
bieguny filtru analogowego, 60
bitowy stosunek sygnał szum, 252, 336
cepstrum, 142
charakterystyka częstotliwościowa, 60
dekoder, 193
konstelacji, 232
różnicowy, 226, 232
dekodowanie, 193
z syndromem, 299
demodulacja, 153
QAM, 230
demodulator
niekoherentny MSK, 210
koherentny MSK, 212
Viterbiego, 212
detekcja synchroniczna, 231
dewiacja częstotliwości, 172
fazy sygnału FM, 172
dolepianie zerami, 34
dyskryminacja częstotliwości, 177
dekodowanie z syndromem, 299
efekt Gibbbusa, 47
efektywna szerokość pasma sygnału FM, 174
efektywność widmowa, 223, 233
eliminacja echa akustycznego, 119
estymator
przedziałowy, 217
punktowy, 215
filtr
Bessela, 63
Butterwortha, 60, 110
Cauera, 63
Czebyszewa typu I, 61
Czebyszewa typu II, 62
dolnoprzepustowy charakterystyka idealna, 47
gabaryty, 46, 60
znormalizowany, 60
dopasowany, 230
eliptyczny, 63
FIR, 67
IIR, 67
NOI (IIR), 59
SOI (FIR), 45
fluktucjasy fazy, 290
formanty, 135
funkcja
autokorelacji, 138
błędu, 287
CMA, 289
deterministyczna, 126
Sato, 288
statystyczna, 122
Bessela pierwszego rodzaju, 212
n-tego rzędu, 174
csign, 289
kształtująca, 227
optymalna, 228
pierwiastek podniesionego kosinusa, 230
podniesiony kosinus, 229
Marcum Q, 212
generacja sygnału FM bezpośrednia, 176
pośrednia, 176
generator VCO, 176
indeks dyskryminacji ID, 256
inicjalizacja korektora, 287, 288
interferencje
międzykanalowe, 243, 244
międzysymbolowe, 224, 227, 233, 271, 285, 286
interpolacja, 223
kanał
binarny symetryczny, 215, 301
ciągły, 193
dyskretny, 193
idealny, 224, 271
MIMO, 317
ε-przepustowość, 322
przepustowość, 319, 322
minimalnofazowy, 272
MISO, 320
nieminimalnofazowy, 272
pierwotny, 193
przepustowość, 248
Rayleigha margines mocy, 317, 322
SIMO, 320
z zanikami, 273
kod, 192
Alamoutiego, 331
BCH, 301
blokowy, 297
Golda, 256
Gray’a, 346
Graya, 224
Hamminga, 300
kanałowy, 297
nadmiarowy, 297
skrócony, 301
splotowy, 305
STBC, 330, 331
rzeczywisty, 332
zespolony, 331
systematyczny, 298
Turbo, 309
koder, 192
konstelacja, 223, 226
różnicowy, 226
kodowanie
bezpoczynne, 225, 231
różnicowe, 225, 227
konstelacja symboli, 224, 287
symetrią, 225
zastępcza, zredukowana, 290
korekcja
ślep, 285, 286
deterministyczna, 286
statystyczna, 286
liniowa, 272
nieliniiowa, 278
sterowana decyzjami, 286
z sekwencją treningową, 285, 287
korektor
ślepy, 287
FIR, 273, 287
IIR, 273
liniowy, 272
MMSE, 274
transmitancja, 273
korelacja wzajemna, 254
korelator „ślizgający się”, 258
krok adaptacji, 123, 125, 128, 276
krzywa Gaussa, 215
kształtowanie symboli, 223
listek
boczny, 31
główny, 31, 34
m-ciągi, 254
macierz
generująca, 298
hermitowska, 352
kontrola parzestości, 298
sprzężona, 352
Toeplitza, 138
unitarna, 352
margines na zagłuszanie, 252
metoda
autokorelacji, 137
kompensacji fazy, 165
ekowariancji, 137, 140
największej wiarygodności, 337
miary ISI, 275
mieszacz układ cyfrowy, 113
model „same bieguny”, 136
modulacja, 149
CPFSK, 205
DSB-SC, 221, 249
dwuwymiarowa, 222
fazy BPSK, 250
FM
szerokopasmowa, 174
wąskopasmowa, 172
GMSK, 215
MSK, 206
o stałej obwodowej, 289
OFDM, 239
PSK, 222
QAM, 221, 222
różnicowa, 226, 231
modulator
MSK, 208
QAM, 222
mowa syntetyczna, 143
nadajnik QAM, 222
nadmiarowość informacyjna, 133
nakładanie widma, 64
niezmienność odpowiedzi impulsowej, 60, 63
norma wektora, 353
odbiornik QAM, 230, 231
odchyłka częstotliwości, 232, 290
odległość
Hamminga, 299
minimalna, 299
odpowiedź impulsowa, 228
odstęp sygnalizacji, 271
okienkowanie, 139
okna funkcja, 30, 34, 47
okno Bartletta (trójkątne), 48
okno Blackmana, 33, 34, 48
okno Hamminga, 33, 34, 48
okno Hanninga (Van Han-
na), 48
okno Kaisera (Kaisera-
Bessela), 49
okno prostokątne, 30, 34, 48
okres
próbkowania, 222, 223
sygnalizacji, 222, 224, 227
pentła fazowa, zob. PLL
pasmo wąskopasmowego sy-
guna FM, 173
PLL, 263
transmitancja otwartej pętli, 265
postkursory, 271, 278
poziom istotności testu, 217
prędkość
bitowa, 222
symbolowa, 222, 230
preemfaza, 178, 186
prefiks cykliczny, 242
prekursory, 271, 278
prototyp analogowy, 60
transmitancja, 63
przelaczanie
 płynne, 291
skokowe, 290
przeciek widmowy, 27, 32
przekształcenie biliniowe, 60,
65
przepływność kanału AWGN,
248
przeplatacz, 309
przesunięcie
 cykliczne, 28
fazy, 232
przesunięcie widma, 209
przetwornik ΣΔ, 111
A/D, 97
D/A, 101
pasmowo-przepustowy, 112
pasmowy, 100
równanie
charakterystyczne macierzy, 352
normalne, 122
normalne deterministyczne,
126
Wienera–Hopfa, 122
reguła Carsona, 174
reprezentacja binarna, 222
rozdzialczość widma, 34
rokkład
Bernoulliego, 215
normalny, 315
Rayleigha, 316
Rice’a, 316
rząd
filtru, 61, 62
kanału MIMO, 341
predykcji, 136, 140
sekcja bikwadratowa, 67
sekwencja treningowa, 276,
285
składowa
kwadraturowa, 221, 223, 224,
232
nieparzysta, 88
parzysta, 88
synfazowa, 221, 223, 224,
232
SNIR, 343
spót
kołowy, 30
liniowy, 29
sprawność kodu, 297
stabilność
transmitancji, 138
układu analogowego, 59
układu cyfrowego, 59
stopa błędów, 200
kanał AWGN, 315
kanał Rice’a, 317
struktury
filtrów FIR
postać bezpośrednia, 67
filtrów IIR
postać bezpośrednia typu I,
67
postać bezpośrednia ty-
pu II, 67
postać kaskadowa, 67
postać równoległa, 67
sygnał
analityczny, 89, 221
cyfrowy, 249
nośny, 221
o modulowanej fazie, 171
pasma podstawowego, 221
wąskopasmowy, 251
sygnały ortogonalne, 221
sygnalizacja
antypodalna, 208
DTMF, 77
symetria widma, 28
synchronizacja, 232, 258
śledzenie, 259
nośnych, 225, 232
symbolowa, 228, 232, 233
syndrom błędu, 299
system
CDMA, 256
DECT, 215
DS, prawdopodobieństwo
błędu Pr, 252
GSM, 215
transmisji rozsiewczej, 285
z kluczowaniem bezpośred-
nim, 248
szum
biały, 230
kwantowania, 98
transformacja
częstotliwościowa, 49, 66
DFT, 25
liniowość, 28
DTFT, 27, 34
FFT, 38
IDFT, 25
transformator Hilberta, 89,
230
transmitancja filtru cyfrowego,
67
FIR, 45
IIR, 59
tryb
sterowany decyzyjnie, 276
uczenia, 276
ulamki proste, 67
układ
adaptacyjny, 119
decyzyjny, 231, 275, 277,
287, 288
uwydajnianie szumów, 341
Viterbiego
algorytm, 307
demodulator, 212
wartości
osobiwe macierzy, 352
szczególne macierzy, 352
własne macierzy, 353
metoda Kryłowa, 356
warunek
minimalizacji błędu średnio-
kwadratowego, 273, 341
Nyquista, 227
wymuszania zera, 272, 339
wektor własny macierzy, 353
wiązadła głosowe, 134
wiadomości, 191
widmo
amplitudowe, 26
fazowe, 26
sygnału DS, 253
ważkosząmowego sygnału
FM, 173
wielomian generujący, 306
wokodery, 134
wskaźnik modulacji, 172
współczynnik
głębokości modulacji, 150
interpolacji, 223
kompresji, 143
nadpróbkowania, 99, 112
przekroczenia pasma, 229
skrętu, 37
zapominania, 126, 128
współczynników
filtru adaptacyjnego, 288–
290
LAR, 144
LPC, 136
odbicia, 144
wykres
kratowy, 206
oczkowy, 233
zakłócenie fazy, 225, 289
znieskształcenia
liniowe, 224, 271
nieliniowe, 100
zwielokrotnienie przestrzenne
kanalu, 338
zysk
kodowania, 332, 336
modulacji FM, 185
przetwarzania \(G_p\), 251
zróżnicowania, 332–334, 336,
341, 342
PROGRAM PARTNERSKI
GRUPY WYDAWNICZEJ HELION

1. ZAREJESTRUJ SIĘ
2. PREZENTUJ KSIAŻKI
3. ZBIERAJ PROWIZJĘ

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj!
http://program-partnerski.helion.pl
Program MATLAB® służy przede wszystkim do obliczeń macierzyowych. Jest potężnym narzędziem, nie do zastąpienia w wielu dziedzinach techniki, elektroniki i projektowania najróżniejszych systemów. Jednym z niezwykle użytecznych zastosowań MATLAB-a jest możliwość wykorzystania tego środowiska do obliczeń związanych z dziedziną telekomunikacji: z przetwarzaniem i przesyłaniem sygnałów, ich interpretacją i modulacją. Ta książka pomoże Ci zrozumieć, jak to wszystko działa, i pokaże, jak osiągnąć oczekiwane efekty pracy.

Jeśli chcesz nauczyć się sprawnie wykorzystywać algorytmy obliczeniowe do znajdowania rozwiązań konkretnych problemów związanych z zagadnieniami telekomunikacji, projektować filtry cyfrowe i syntezytory mowy, obliczać przepustowość kanałów transmisyjnych albo pisać funkcje implementujące układy dekoderów dla różnych typów modulacji, nie możesz obejść się bez tego podręcznika. Oprócz konkretnych, precyzyjnych informacji zawiera on mnóstwo praktycznych zadań, umożliwiających sprawdzenie wiedzy i dogłębne zrozumienie zasad działania środowiska MATLAB. Czytaj i ucz się pilnie!

- Wprowadzenie
- Przetwarzanie i przesyłanie sygnałów
- Dyskretna transformacja Fouriera i splot kołowy
- Filtry cyfrowe FIR oraz IIR
- Sygnalizacja DTMF
- Przesuwanie widma sygnału
- Przetwarzanie $\Sigma \Delta$ i pasmowo-przepustowy przetwornik $\Sigma \Delta$
- Elektroniczna eliminacja echa i liniowa predykcja sygnału
- Modulacja AM i SSB
- Modulacja i demodulacja FM
- Szumy w systemach FM i transmisja w paśmie podstawowym
- Modulacja QAM i MSK/GMSK
- Synchronizacja nadajnika i odbiornika
- Korekcja zniekształceń liniowych i ślepa korekcja kanału
- Kody blokowe i spłotowe
- Modulacja OFDM i z widmem rozproszonym
- Techniki MIMO

MATLAB — niezastąpiony w obliczeniach i modelowaniu rozwiązań!